聲明

本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 [如本頁取材自〇〇〇教授演講內容]。

永續化學合成(4) 可再生性資源在合成上的利用

劉廣定 臺大化學系 (ktliu@ntu.edu.tw)

The use of chemicals and solvents from renewable resources

永續化學十二原則 (Anastas and Warner, 1998)

7. A raw material or feedstock should be renewable rather than depleting, whenever technically and economically practicable.

永續工程十二原則(Anastas and Zimmerman, 2003)

Material and energy inputs should be renewable rather than depleting.

永續十律 Ten commandments of sustainability (Manahan, 2005)

7. Material demand must be drastically reduced; materials must come from renewable resources, be recyclable and, if discarded to the environment, be degradable.

二氧化碳

無毒(但能令人窒息)

不自燃也不助燃

有高純度之廉價商品

易成液態或超臨界態

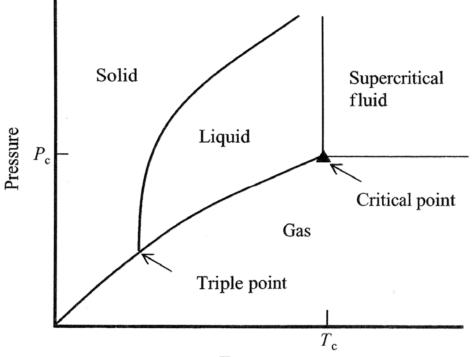
易除去或回收再用

可用為溶劑及反應試劑

Green Chemistry Using Liquid and Supercritical Carbon Dioxide (DeSimone and Tumas, Ed., Oxford, 2003)

Green Reaction Media in Organic Synthesis (Mikami, Ed., Chapter 4, Blackhill, 2005)

The Potential of CO₂ in Synthetic Organic Chemistry (Rayner, *Org.*


Proc. Res. Dev. 2007, 11, 121-132)

Alternative Solvents for Green Chemistry (Kerton, Chapter 4, RSC, 2009)

Phase diagram and critical points

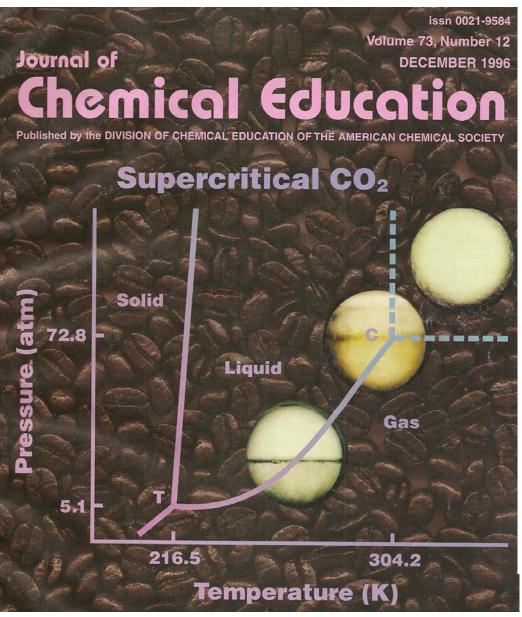
•			
'em	201	n fr	TTO
	1161	711	

Material	T _c (°C)	P _c (bar)
Ammonia	132.4	113.2
Carbon dioxide	31.1	73.8
Ethane	32.2	48.7
Ethene	9.2	50.4
Fluoroform	25.9	48.2
Propane	96.7	42.5
Water	374.2	220.5

Advantages and disadvantages of using CO₂ as a solvent

Advantages	Disadvantages
Non-toxic	Relatively high pressure equipment
Easily removed	Equipment can be capital intensive
Potentially recyclable	Relatively poor solvent
Non-flammable	Reactive with powerful nucleophiles
High gas solubility	Possible heat-transfer problems
Weak solvation	*
High diffusion rates	
Ease of control over properties	(Language Croon Chamistry
Good mass transfer	(Lancaster, <i>Green Chemistry</i>
Readily available	Table 5.3)

Liquid CO₂ (50-60 bar, rt): Application in dry-cleaning, etc.; relatively little studied, many potential benefits Supercritical fluid CO₂ (>74 bar, >31°C): Application in decaffeination; natural product extraction, any many more



Non-fluorinated (ether-carbonate) copolymer by Beckman and coworkers at U. of Pittsburgh. **PGCC Award of 2002**

化工技術

1998年10月號/第67期

超臨界流體技術 專輯	談駿嵩主編
超臨界流體技術專輯前言 談駿嵩	118
超臨界流體系統平衡溶解度之量測及關聯 林河木・李明哲	120
超臨界流體層析儀之介紹	120
性 付 が 担 様 が 担 様 が 担 様 が 担 様 か ま か ま か ま か ま か ま か ま か ま か ま か ま か	140
孫璐西・廖怡禎	148
超臨界溶媒技術萃取天然物之應用 張傑明・張慶源・巫錫銘	172
超臨界流體於塑膠發泡之應用 梁明在・戴宏哲・吳昭燕	180
超臨界流體技術在新材料開發上之應用	180
戴怡德 超臨界二氧化碳染色技術	188
林文發	198
超臨界濕式氧化技術 王鴻博・林錕松・黄鈺軫	206

Chemical Reactions in Supercritical Carbon Dioxide

C. M. Wai, Fred Hunt, Min Ji, and Xiaoyuan Chen

Department of Chemistry, University of Idaho, Moscow, ID 83844-2343

J. Chem. Educ. 1996, 75, 1641-1645

Research: Science and Education

Making Nanomaterials in Supercritical Fluids: A Review

Xiangrong Ye and C. M. Wai*

Department of Chemistry, University of Idaho, Moscow, ID 83844-2343; *cwai@uidaho.edu

J. Chem. Educ. 2003, 80, 198-204

Supercritical Fluids for the Fabrication of Semiconductor Devices: Emerging or Missed Opportunities?

Alvin H. Romang and James J. Watkins*

Polymer Science and Engineering Department, University of Massachusetts-Amherst, Amherst, Massachusetts 01003

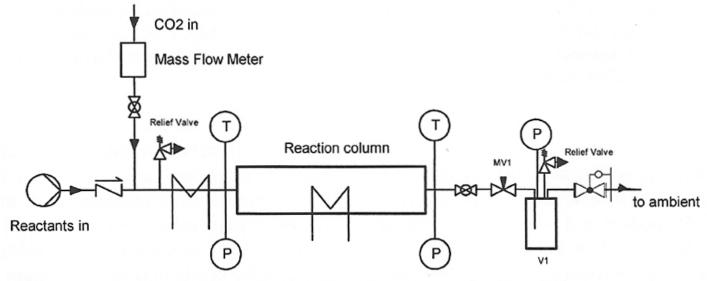
Chem. Rev. 2010, 110, 459-478 8

Examples

Enantioselective hydrogenation in scCO₂-H₂O system

Hydrogenation in Biphasic IL-scCO₂ system

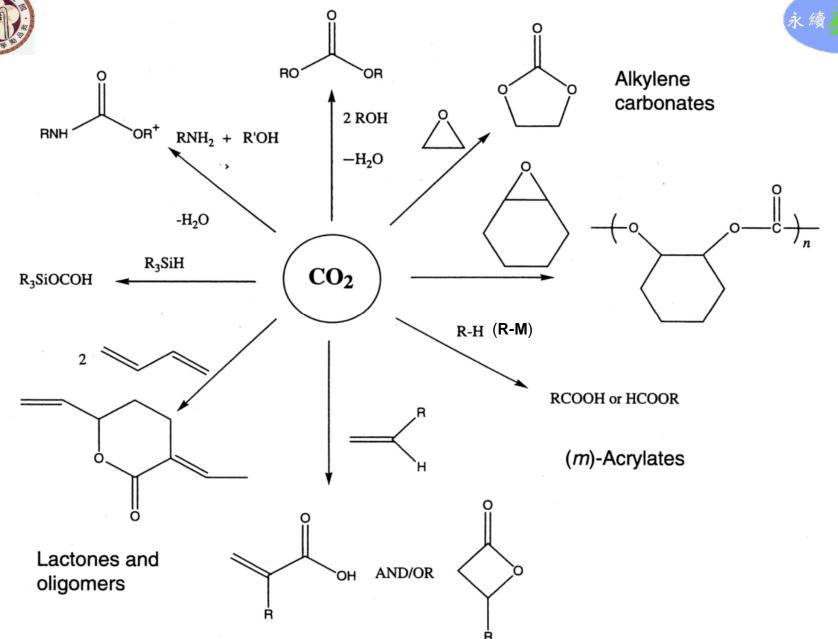
Biocatalytic esterification


Courtesy of Professor C. M. Wai, U. Idaho.

Continuous-Flow Suzuki-Miyaura Reaction in SCF-CO₂

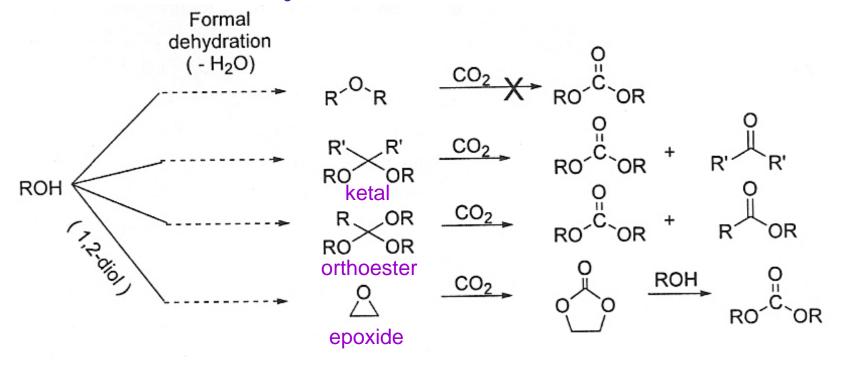
Suzuki-Miyaura preparation of 4-phenyltoluene 3 under continuous-flow conditions.

Schematic of continuous-flow apparatus for Suzuki-Miyaura reaction in scCO₂.


CO₂ Transformations

- **Biological** → carbohydrate; HCOOH + CH₃OH
- **Photochemical** \rightarrow CO, CH₃OH, HCOOH, etc.
- Electrochemical \rightarrow CO, CH₃OH, HCOOH, etc.
- Reforming \rightarrow CO + H₂
- Inorganic \rightarrow M_2CO_3

(Sakakura, Choi and Yasuda, *Chem. Rev.* **2007**, *107*, 2365-2387)



Dialkyl carbonate from CO₂

Production of dimethyl carbonate from ethylene oxide and CO₂ as a more effective way for the reuse of CO₂

(Clean Technologies and Environmental Policy 2009, 11(4), 459-472

Low toxicity, no mutagenic or irritating effect.

Biodegradable (>90% in 28 days)

Melting point (°C)	4.6
Boiling point (°C)	90.3
Density (d ₄ ²⁰)	1.07
Viscosity (μ ²⁰ , cps)	0.625
Flashing point (°C, O.C.)	21.7
Dielectric constant (ε ²⁵)	3.087
Dipol moment (μ, D)	0.91
ΔH vap (kcal/kg)	88.2
Solubility H_2O (g/100g)	13.9
Azeotropical mixtures	With water, alcohols, hydrocarbons

Useful methylation and alkoxycarbonylation agents

$$\leq$$
 90 C PhOH + CH₃OCOOCH₃ $\xrightarrow{\text{Cat. base}}$ PhOCH₃ + CO₂ + CH₃OH \geq 160 C ROH + CH₃OCOOCH₃ $\xrightarrow{\text{Cat. base}}$ ROCOOCH₃ + CH₃OH

Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents

(M. Selva and A. Perosa, *Green Chem.* **2008**, *10*, 457-464)

The methylating effciency of DMC, DMS, MeI and MeOH was assessed based on atom economy and mass index. These parameters were calculated for three model reactions: the O-methylation of phenol, the mono-C-methylation of phenylacetonitrile, and the mono-N-methylation of aniline. The analysis was carried out over a total of 33 different procedures selected from the literature. Methanol and, in particular, **DMC yielded very favorable mass indexes** (in the range 3-6) indicating a significant decrease of the overall flow of material (reagents, catalysts, solvents, *etc.*), thereby providing safer greener catalytic reactions with no waste.

$$\mathbf{MI} = \frac{\sum \text{reagents} + \text{catalysts} + \text{solvents} + \textit{etc.} (kg)}{\text{Desired product (kg)}}$$

Organic reactions in aqueous media

Reference books and review articles:

- Adams, et al., Chemistry in Alternative Reaction Media, 2004, Wiley
- Lindström Ed., Organic Reactions in Water, 2007, Blackwell
- Li and Chan, Comprehensive Organic Reactions in Aqueous Media, 2nd Ed, 2007, Wiley
- Herrerias, et al., Chem. Rev. 2007, 107, 2546-62 (Reaction of C-H)
- Dallinger and Kappe, Chem. Rev. 2007, 107, 2563-91 (MW assisted)
- Hailes, Org. Proc. Res. Dev. 2007, 11, 114-120 (general discussions)
- Kerton, Alternative Solvents for Green Chemistry, Chapter 3, 2009, RSC
- Minakata and Komatsu, Chem. Rev. 2009, 109, 711-724 (on silica)
- Chanda and Fokin, Chem. Rev. 2009, 109, 725-748 (on water)

 Table 5.4 Advantages and disadvantages of using water as a solvent

Advantages	Disadvantages
Non-toxic	Distillation is energy intensive
Opportunity for replacing VOCs	Contaminated waste streams may be difficult to treat
Naturally occurring	High specific heat capacity – difficult to heat or cool rapidly
Inexpensive	
Non-flammable	
High specific heat capacity –	
exothermic reactions can be more	
safely controlled	Lancaster, p. 149
Odorless and colorless (contamination is easy to recognize)	Some compounds or catalysts react with water in an adverse way. Water-soluble catalyst is difficult to recover.

Water's dissociation peaks under near-critical conditions

	Ambient	Near- critical	Supercritical
Temperature, °C	25	275 (20 30)	00-400 (374)
Pressure, bar	1	60	230 (221)
Density, g per cc	1	0.7	0.1
Dielectric constant	80	20	2 (6)
Relative ionization constant ^a	1	1,000	<0.01

^a Kw/Kw(25°C)

Reactions in near-critical water (NCW

$$\begin{array}{c} H_2 \\ Ph-C-CHO \xrightarrow{Aldol} \begin{array}{c} Ph \\ \hline -H_2O \end{array} \begin{array}{c} Ph \\ \hline -H_2O \end{array} \begin{array}{c} Ph \\ \hline Ph \\ \hline \end{array} \begin{array}{c} Ph$$

$$NO_2$$
 NCW
 NH_2
 NO_2

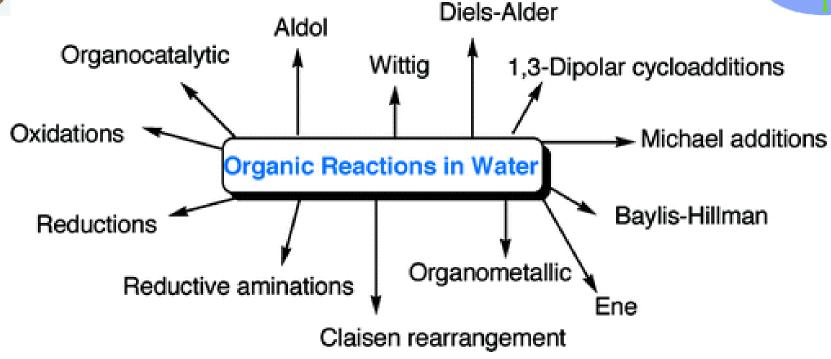
$$NH_2$$
 $+ H_2O$
 $+ HNO_3 + H^{\oplus}$

No acid or base catalyst is required.

Also for other hydrolysis, hydration, elimination, rearrangement, etc

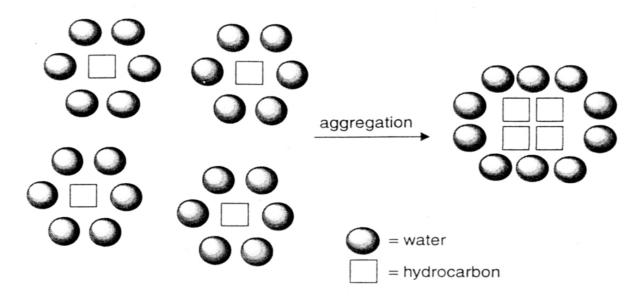
Some microwave assisted reactions at NCW

Fischer indole synthesis


Diels-Alder reaction

isolated yield 65% (extraction, Et₂O chromatography, CH₂Cl₂)

(Kerton, p. 88)


Hailes, Org. Process Res. Dev. 2007, 11, 114-120

This short review focuses on the potential use of water as a reaction solvent, highlighting advantages and the range of reactions that can be carried out in water.

Hydrophobic Effects

Figure 5.5 The hydrophobic effect. Aggregation of hydrocarbon molecules in water reduces the number of molecules with restricted motion

Scheme 5.1 Indium mediated imine coupling

Diels-Alder Reaction

Enhanced Selectivity and Reactivity

kinetics 10 ⁵ k (M ⁻¹ s ⁻¹)	selectivity endo/exo ratio
5.94ª	
75.5ª	8.5 c
318 ^b	8.9 ^b
480 ^b	10.4 ^b
4400a	25 ^d
10800°	28 ^d
4300a	22 ^d
10900°	
2610a	
	5.94 ^a 75.5 ^a 318 ^b 480 ^b 4400 ^a 10800 ^a 4300 ^a 10900 ^a

Claisen Rearrangement

A sigmatropic rearrangement
$$O = 60^{\circ}\text{C}$$

Na⁺⁻OOC(CH₂)₆

Solvent $O = 60^{\circ}\text{C}$
 $O = 60^{\circ}\text{C}$

Na⁺⁻OOC(CH₂)₆

Solvent $O = 60^{\circ}\text{C}$
 $O = 60^{\circ}\text{C}$

Na⁺⁻OOC(CH₂)₆
 $O = 60^{\circ}\text{C}$

Na⁺⁻OOC(CH₂)₆

10⁻⁵ k (s⁻¹)

18

CF₃CH₂OH

CH₃OH

2.6

CH₃OH

0.79

င်၊ **12**

Solvent	Yield [%] ^[b]
toluene	16
DMF	21
CH ₃ CN	27
MeOH	56 ^[c]
neat	73
on H ₂ O	100

(m.p.: 54-56 °C)

Grignard-type Reactions

Allyl indium (1)

$$R$$
 R
 R
 H_2O
 R
 H_2O
 R
 H_2O
 R
 H_2O
 R
 H_2O
 R
 H_2O
 R
 H_2O

Indium has low first ionization potential (5.70 eV), and is not sensitive to water or base. The regioselectivity is governed by the bulkiness of the substituent on the C=C.

Similarly, in the tin-mediated allylation reaction, allyltin intermediates are generated (13). Both allyltin(II) bromide (2) and diallyltin(IV) dibromide (3) are formed, and can be observed by NMR in the aqueous media (Scheme 3).

High chemoselectivity

Other C-C bond formations

Condensation of active methylene compounds

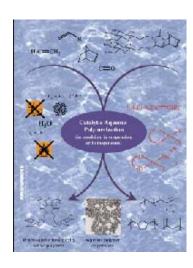
Mukaiyama aldol reactions

Biaryls

entry	water (mol %)	conversion (%)	selectivity (%)
1	0	96	78
2	250	94	89
3	450	86	91

isolated yields: 60-99 %

Four-component catalyst-free reaction in water:


Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1*H*-pyrazol-4-yl)-4*H*-chromene-3carbonitrile derivatives

Kumaravel and Vasuki, *Green Chem.* **2009**, *11*, 1945-1947

Catalytic Aqueous Polymerization

Mecking, et al., Angew. Chem. Int. Ed. 2002, 41, 545-561

Controlled/'living" radical polymerization applied to water-borne systems

Matyjaszewski, Macromolecular Symposia, 2000, 155,15-29

Atom Transfer Radical Polymerization employs the activation of an alkyl halide by a transition metal catalyst to for a radical which can initiate polymerization.

Hydrogen atom transfer (HAT) reactions in aqueous media. A mechanistic study

2009 PGCC Academic Award

Atom Transfer Radical Polymerization: Low-impact Polymerization
Using a Copper Catalyst and Environmentally Friendly Reducing Agents
Carnegie Mellon University)

Innovation and Benefits: Professor Matyjaszewski (Carnegie Mellon Univ.) developed an alternative process called "Atom Transfer Radical Polymerization (ATRP)" for manufacturing polymers. In ATRP, a Cu(I)-based catalyst, or activator, is continually oxidized to a Cu(II) species during polymerization and replenished by recycling. Activators regenerated by electron transfer (ARGET) reduces the amount of copper catalyst from more than 1,000 ppm to around 1 ppm by using sugar, or ascorbic acid reducing agents. ATRP has been licensed to many manufacturers throughout the world, reducing risks from hazardous chemicals.

(His student Ke Min got 2006 Hancock Memorrial Award for research in ATRP.)

Organic Reactions on Silica in Water

Minakata and Komatsu, Chem. Rev. 2009, 109, 711-724

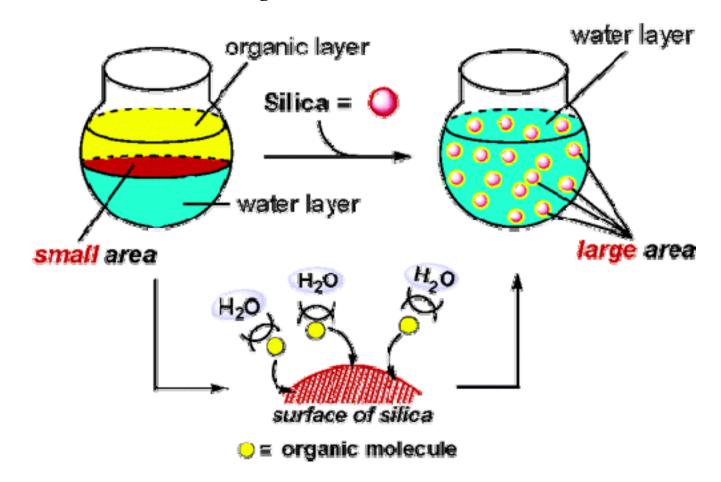
Heterogenization of homogeneous catalytic reaction allows for the facile recovery and recycling of catalysts. Two basic approaches have been developed.

- 1. Immobilization of catalysts on silica supports in a wateronly phase.
- 2. To employ a biphasic system:

Water – organic solvent

Water – ionic liquid

Fluorous reverse-phase silica and water Silica without modification is also generally used.


Mesoporous Silica-supported catalyst and Suzuki Coupling

HO—I + PhB(OH)₂
$$\xrightarrow{SBA-Si-PEG-Pd(PPh_3)_4}$$
 $\xrightarrow{(0.001 \text{ mol}\%)}$ HO—Ph
 $K_3PO_4 \bullet 3H_2O$
 $H_2O, 50 \, ^{\circ}C, 24 \, h$
 98%

Ring Opening and Expansion of Aziridines in a Silica—Water Reaction Medium

S. Minakata, et al., J. Org. Chem., 2006, 71 (19), 7471–7472

Ring Opening of Aziridines with KCN

aziridine			
R ¹	\mathbb{R}^2	R ³	yield (%)
n-C ₆ H ₁₃	Н	Н	69
CH_2Ph	Н	Н	72
sec-C ₄ H ₉	Н	Н	57
Ph	Н	Н	24
CH ₂ OH	Н	Н	32
H	-(Cl	$I_2)_3-$	58
Н	-(CI	$H_2)_3 H_2)_4-$	88

Aqueous Process Chemistry

The Preparation of Aryl Sulfonyl Chlorides

Hogan and Cox, Org. Proc. Res. Dev., 2009, 13, 875-879

$$X \xrightarrow{\qquad \qquad (i)} \frac{HCl/NaNO_2/H_2O}{SOCl_2/CuCl/H_2O} \qquad X \xrightarrow{\qquad \qquad } SO_2Cl$$

The method has been shown to be successful for a wide range of electron-deficient and electron-neutral aryl substrates., which results in their direct precipitation from the reaction mixture in >70% yields. The aqueous process can be readily scaled up and has significant environmental benefits.

A Scalable Zinc Activation Procedure Using DIBAL-H in a Reformatsky Reaction

Girgis, et al., Org. Proc. Res. Dev., 2009, 13, 1094-1099

水資源的消耗

Industrial	Products	Water Required ^a	Consumer Products	Water Required ^b
Steel	噸	100 噸	Laptop computer	10,600 公升
Paper		20	1 kg flour	77
Copper		400	1 bowl rice	525
Rayon		800	1 L red wine	720
Aluminum		1280	1 cup coffee	140
Synthetic r	ubber	2400	1 XL cotton tee shirt	30,300

^aIn cubic meters per metric ton. A cubic meter of water weighs 1000 kg, or 1 t.

水不應只用一次

Society no longer has the luxury of using water only once.

Levine and Asano, Recovering Sustainable Water from Water Waste, *Environ. Sci. Technol.* **2004**, *38*, 201A-209A

Sustainable Water Award (first in 2010) by RSC

^bIn liters.

Chemicals from renewable feedstocks

Monographs:

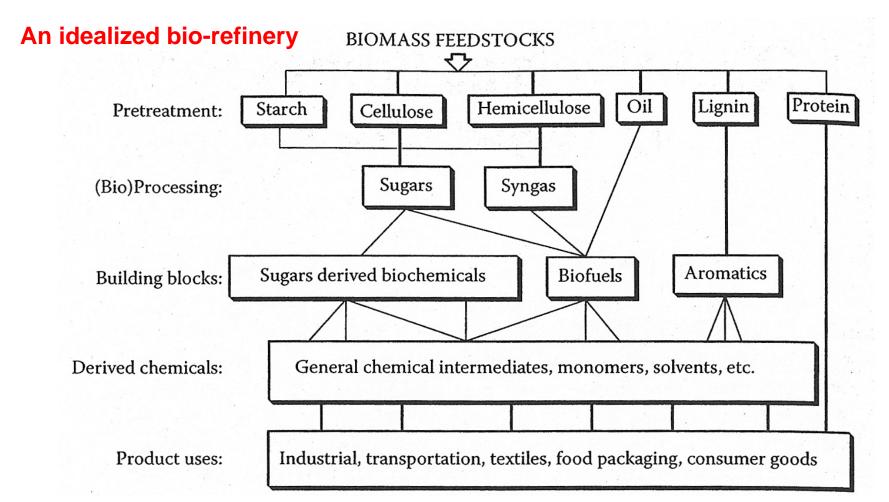
Renewable Resources and Renewable Energy, Ed. M Graziani and P. Fornasiero, CRC Press, 2007

Catalysis for Renewables, Ed. G. Centi and R. A. van Santen, Wiley-VCH, 2007

Introduction of Chemicals from Biomass, Ed. J. Clark and F. Deswarte, Wiley, 2008

Review articles:

- Corma, et al. *Chem. Rev.* **2007**, *107*, 2411-2502 (general)
- Meier, et al. *Chem. Soc. Rev.* **2007**, *36*, 1788-1802 (polymers)
- Behr, et al. *Green Chem.* **2008**, *10*, 13-30 (glycerol)
- C. Delhomme, et al. Green Chem. **2009**, 11(1),13-26 (succinic acid)


and many more

Renewable resources:

Carbohydrates (sugar, starch, cellulose, etc.), 75% Lignin, 20% Fats and oils, proteins, terpenes, etc., 5%

OH

$$\beta$$
-1,4'-glycosidic linkage

starch

HO

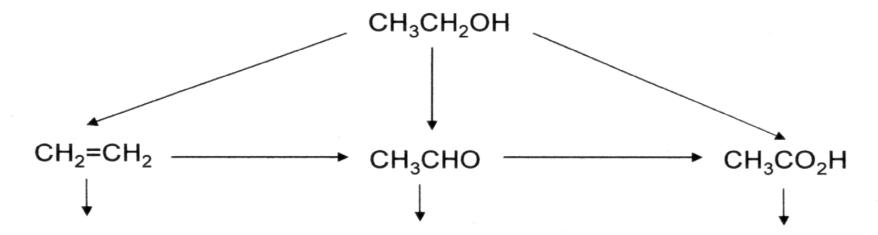
ĆH₂OH

lpha -1,4'-glycosidic linkage

Hemicellulose (containing xylose, arabinose, glucose, etc.) Sucrose (glucose and fructose)

CH₂OH

CH₂OH


OH

醣類發酵產生乙醇(ethanol)

Chemicals from ethanol

Ethyl benzene

Ethyl bromide

Ethyl chloride

Ethylene chlorohydrin

Ethylene diamine

Ethylene dibromide

Ethylene dichloride

Ethylene glycol

Ethyleneimine

Ethylene oxide

Diethyl ketone

Diethylene glycol

Glycol ethers, esters

MEA, DEA, TEA

Vinyl acetate

Polymers, copolymers

Acetic acid

Acetic anhydride

Aldol products

Butyl acetate

Butyl alcohol

Butyraldehyde

Chloral

Ethyleneimine

Pyridines

Acetamide

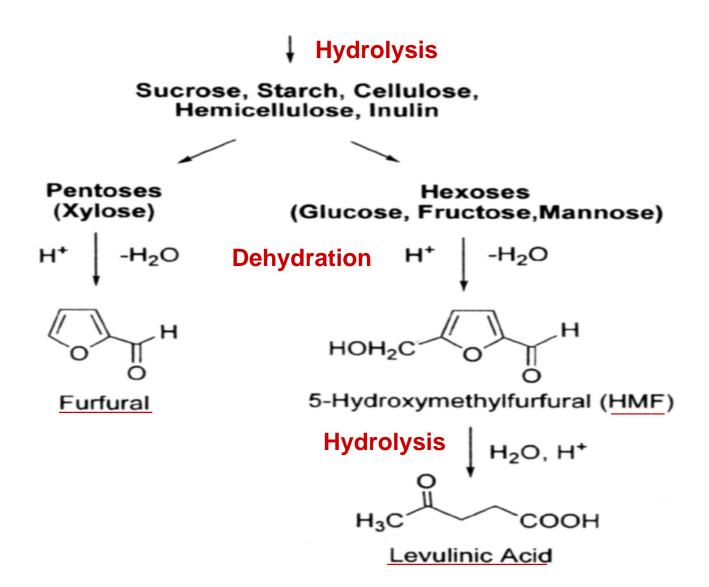
Acetanilide

Acetyl chloride

Acetic anhydride

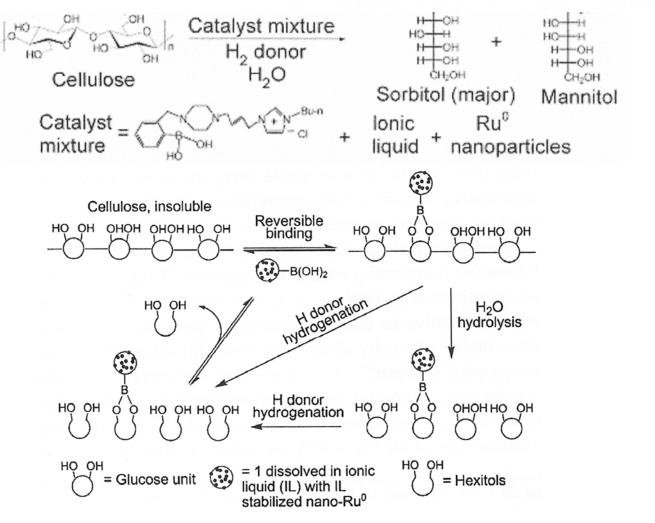
Dimethyl acetamide

Cellulose acetates


Esters

如此好資源,為何當燃料?

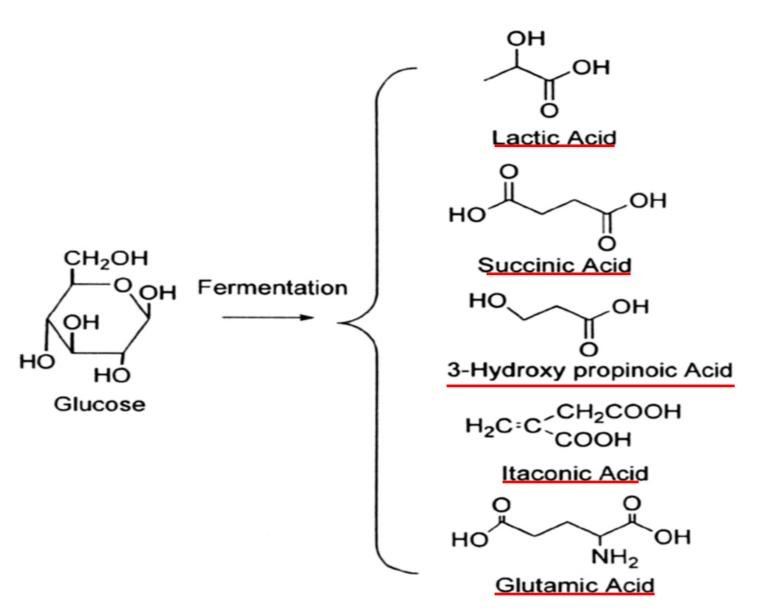
From polysaccharides (vegetal biomass)



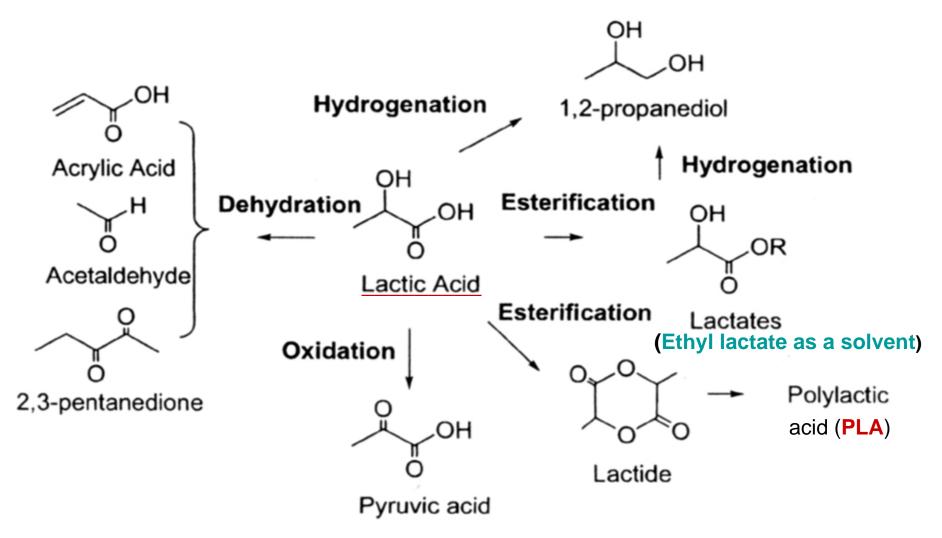
44

Conversion of Cellulose to Hexitols Catalyzed by Ionic Liquid-Stabilized Ruthenium Nanoparticles and a Reversible Binding Agent

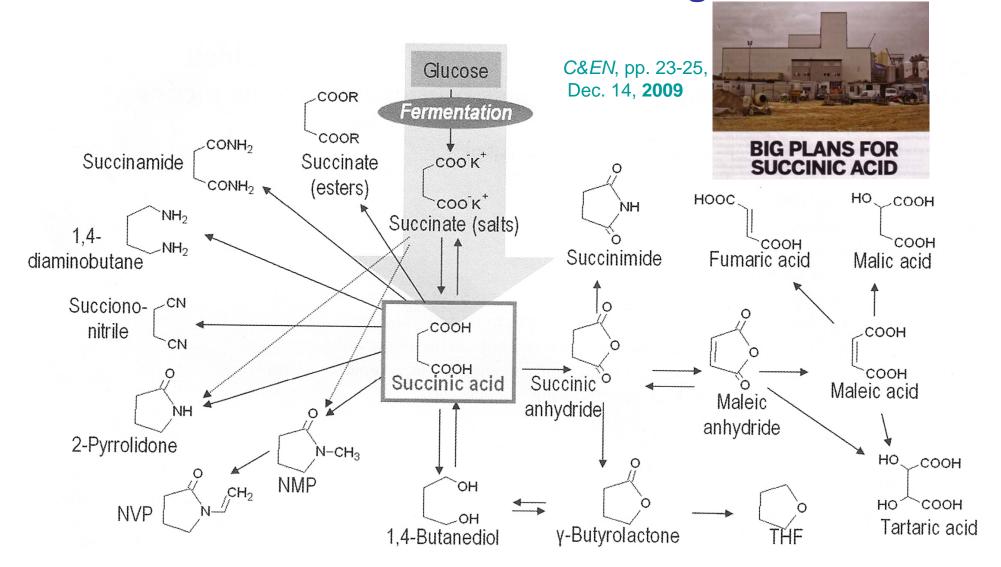
Yinghuai Zhu,*^[a] Zhen Ning Kong,^[a] Ludger Paul Stubbs,^[a] Huang Lin,^[a] Shoucang Shen,^[a] Eric V. Anslyn,^[b] and John A. Maguire^[c]

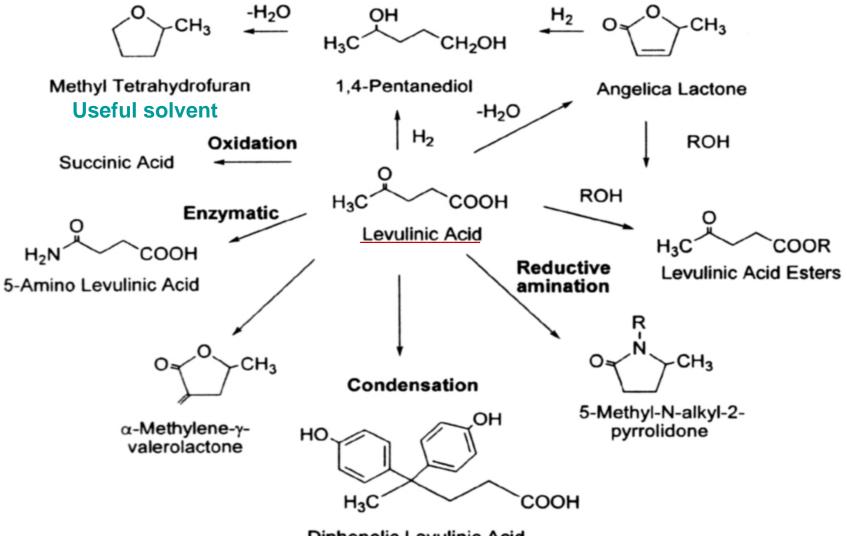


Glucose to other chemicals



More from fermentation of glucose


Important chemicals from lactic acid


Succinic acid as C-4 building block

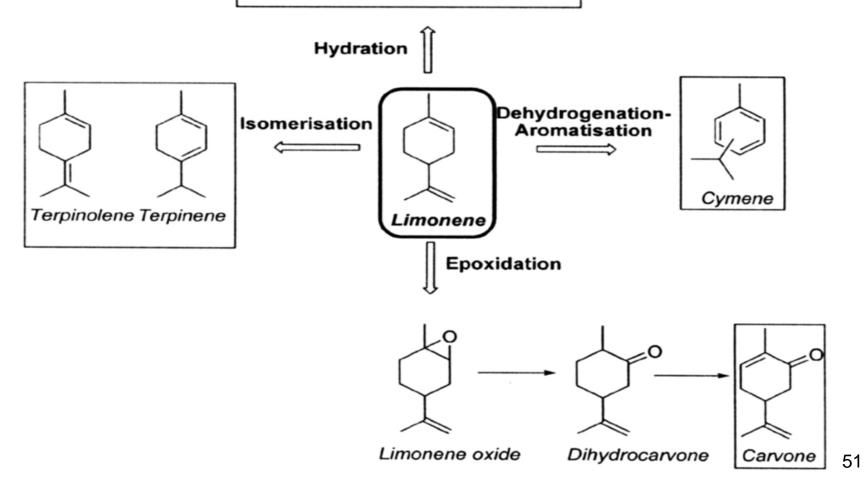
Compounds from levulinic acid

Diphenolic Levulinic Acid

1999 PGCC Award of Small Business—Biofine process to make levulinic acid from paper mill sludge, agricultural residues, waste wood and papers.

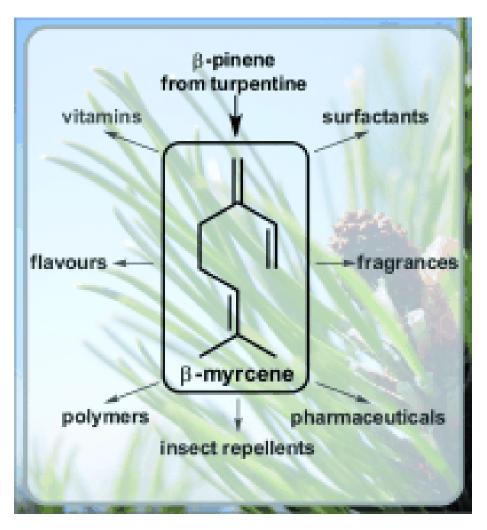
Inexpensive terpenes to useful chemicals

Limonene


- Limonene is a by-product of the juice industry (50,000 tpa).
- It can be used as a stand alone solvent, and is considered a potential, non-toxic, xylene replacement in some medical applications as it breaks down in the body benign metabolites.
- It can also be dehydrogenated to form p-cymene:

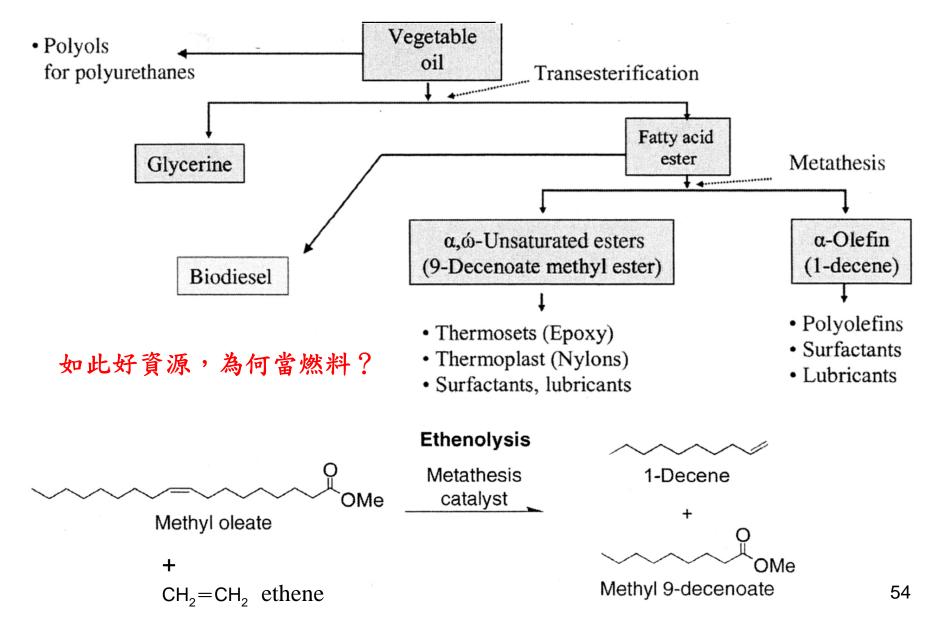
p-cymene

a solvent
an important intermediate chemical
in the fragrance industry
an intermediate
a *p*-cresol intermediate
a raw material for synthesis of nonnitrated musks



Myrcene as a Natural Base Chemical in Sustainable Chemistry

Behr and Johnen, *ChemSusChem* **2009**, *2*, 1072-1095


Fats and oils (Triglycerides)

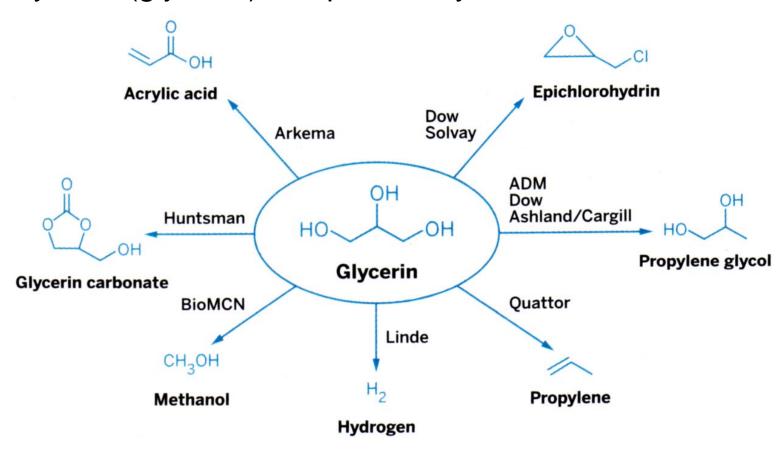
Soybean oil is a statistical mixture of glycerol esters of palmitic acid (10%), stearic acid (3%), oleic acid (23%), linoleic acid (55%), and linolenic acid (9%).

Bio-refinery of vegetable oils

2007 PGCC Designing Greener Chemicals Award

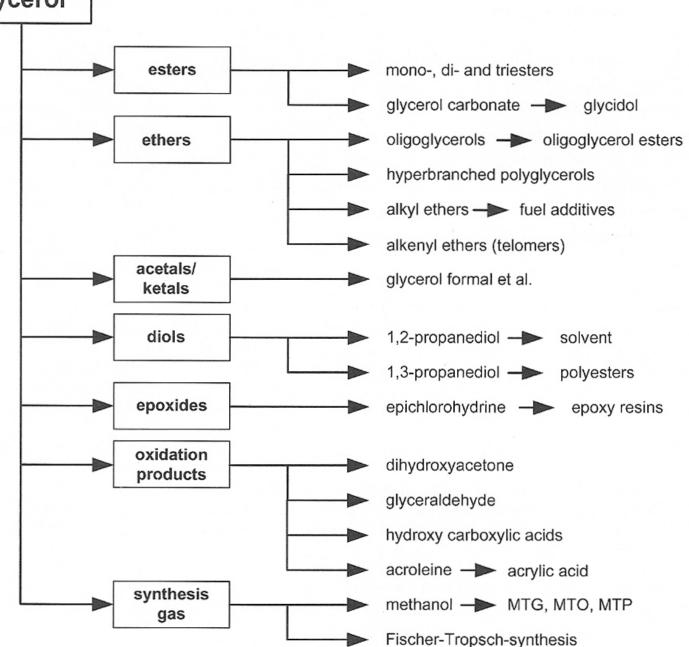
BiOH™ Polyols

Cargill, Incorporated


Innovation and Benefits: One of the two chemical building blocks used to make polyurethane is a "polyol." Polyols are conventionally manufactured from petroleum products. Cargill's BiOH™ polyols are manufactured from renewable sources such as soybean oils. Each million pounds of BiOH™ polyols saves nearly 700,000 pounds of crude oil. Cargill's process reduces total energy use by 23 % and carbon dioxide emissions by 36 %.

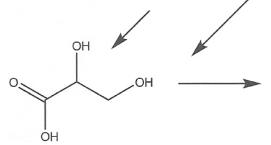
The use of fatty acids and glycerol

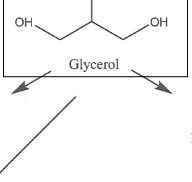
- The acidic function (COOH) can be modified.
- The alkene function (C=C) can be modified.
- Glycerol (glycerin) is a potentially versatile feedstock.



56

glycerol

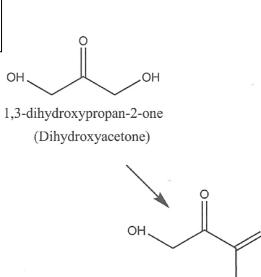



Oxidation at different pH, or using different

oxidant

2,3-dihydroxypropanoic acid (Glyceric acid)

(Glycolic acid)



 OH

ÓН

2-hydroxymalonic acid (Tartronic acid)

ÓН

3-hydroxy-2-oxopropanoic acid (Hydroxy pyruvic acid)

ÒН

(Mesoxalic acid)

(Glyoxylic acid)

2003 Greener Reaction Conditions Award

Microbial Production of 1,3-Propanediol

Innovation and Benefits:

DuPont and Genencor International jointly developed a genetically engineered microorganism to manufacture the key building block for DuPont's Sorona® polyester. This achievement, comprising biocatalytic production of 1,3-propanediol from renewable resources, offers economic as well as environmental advantages... (glucose → glycerol → 1,3-propanediol)

2006 Academic Award

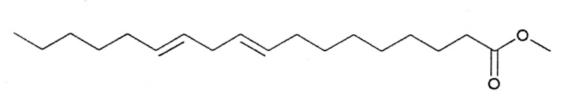
Biobased Propylene Glycol and Monomers from Natural Glycerin Innovation and Benefits:

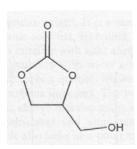
Professor Suppes (U. Missori-Columbia) developed an inexpensive method to convert waste glycerin, a byproduct of biodiesel fuel production, into propylene glycol, which can replace ethylene glycol in automotive antifreeze. It can help biodiesel become a cost-effective, viable alternative fuel...

(glycerol → 1,2-propanediol)

Solvents from renewable resources

∕ OH


НООНОН


2-MeTHF

Ethyl lactate

γ -Valerolactone

Alcohols and polyols

Glycerol carbonate

Fatty acid ester (Biodiesel component)

Industrial uses of esteric green solvents

Solvent	Non-reactive diluent in epoxy or polyurethane systems	
Glycerol carbonate		
Ethyl lactate	Degreaser	
	Photo-resist carrier solvent	
	Clean-up solvent in microelectronics and semiconductor manufacture	
2-Ethylhexyl lactate	Degreaser	
	Agrochemical formulations	
Fatty acid esters	Biodegradable carrier oil for green inks	
(and related compounds)	Coalescent for decorative paint systems	
	Agrochemical/pesticide formulations	6

敬請不吝指教

劉廣定 臺大化學系 (ktliu@ntu.edu.tw)