聲明

本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 [如本頁取材自〇〇〇教授演講內容]。

Recent Advances in Green Catalysis

觸媒反應新趨勢

Chun-Chen Liao

Department of Chemistry, Chung Yuan Christian University Chungli 32023, TAIWAN

綠色/永續化學合成工作坊 化學會年會,清華大學 2011.12.02 主辦單位:化學會化學與環境委員會

協辦單位:中央研究院化學研究所

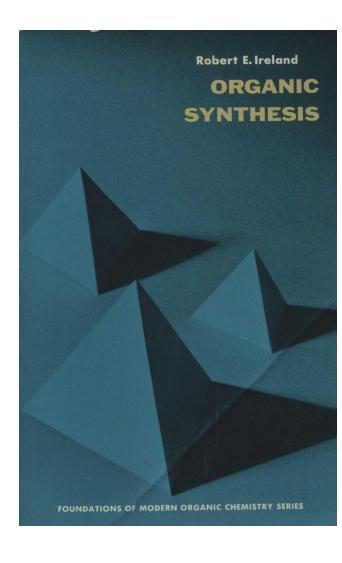
清華大學化學系

國科會化學推動中心

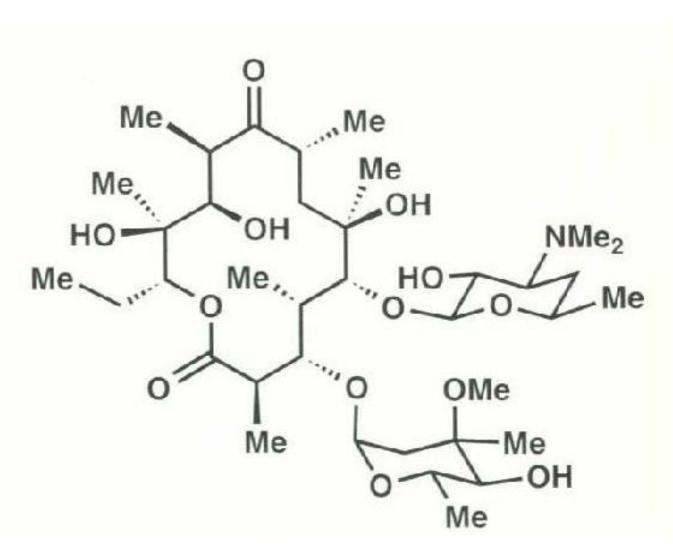
第七次全國科學技術會議

討論議題一:發展特色研究領域

- (一) 強化海洋科技研究
- (二)發展綠色科技研究
- (三)強化跨領域尖端研究能力


Molecular Design and Synthesis

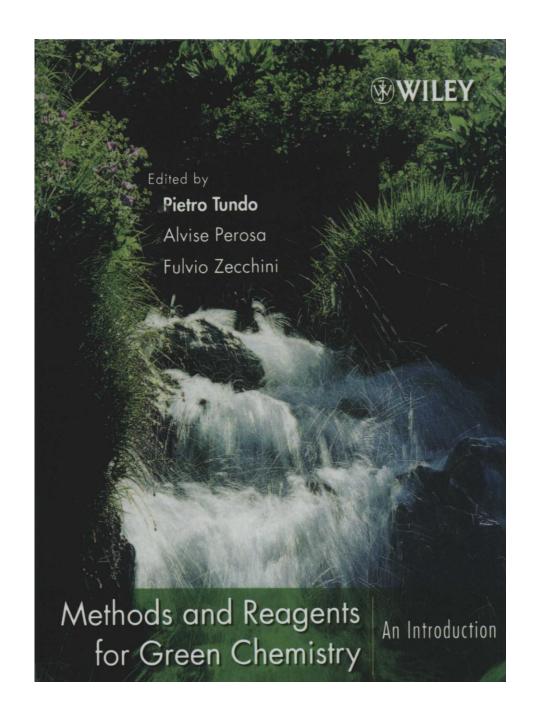
Molecular design is the application of all techniques leading to the discovery of new chemical entities with specific properties required for the intended application.


IUPAC Gold-Book

Organic Synthesis

- C-C bond formation
- Transformation of functional groups
- Stereochemistry

Stereochemistry raises its ugly head


Erythromycin A

Stereocenters = 18

Stereoisomers = 262,144

Green Chemistry

Technologies that efficiently utilize energy and raw materials and reduce, or preferably, eliminate, the generation of waste and avoid the use of toxic and /or hazardous reagents, and solvents.

Condensed Principles of Green Chemistry

Twelve principles of green chemistry written in the form of a mnemonic: PRODUCTIVELY

- P Prevent wastes
- R Renewable materials
- O Omit derivatization steps
- **D** Degradable chemical products
- U Use safe synthetic methods
- **C** Catalytic reagents
- T Temperature, Pressure ambient
- I In–Process Monitoring
- V Very few auxiliary substances
- E E-factor, maximize feed in product
- L Low toxicity of chemical products
- Y Yes, it is safe

Nature of Green Solvents

having...

- Low toxicity
- Easy recyclability (No disposal)
- Further desirable characteristics:
 easy removal from the product and low reactivity.

Water as a Solvent

Advantages

- Economically & Environmentally attractive
- Inexpensive and abundantly available
- Non-inflammable and non-toxic
- Odorless & colorless
- Highly polar reaction medium
- Novel reactivity of organometallic complexes
- Facile product separation/catalyst recycling
- Reduced product contamination

Catalysis

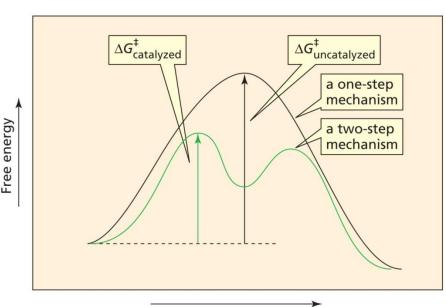
Brønsted Acid-Base Catalysis
Lewis Acid-Base Catalysis
Transition-metal catalysis
Organocatalysis
Asymmetric Catalysis
Biocatalysis
Photocatalysis

Handbook of Green Chemistry

Edited by Paul T. Anastas

WILEY-VCH

Green Catalysis


Volume 1: Homogeneous Catalysis

Volume Editor: Robert H. Crabtree

Catalysis in Organic Reactions

- It can provide a new reaction route.
- It can increase the stability of a transition state.
- It can increase the reactivity of a nucleophile.
- It can increase the susceptibility of an electrophile to nucleophilic attack.
- It can increase the leaving ability of a group by converting it into a weaker base.

Progress of the reaction

Copyright © 2007 Pearson Prentice Hall, Inc.

adapted from Organic chemistry by P. Y. Bruice

Free energy

Progress of the reaction

Copyright © 2007 Pearson Prentice Hall, Inc.

Homogeneous vs. Heterogeneous Catalysis

Homogeneous

Heterogeneous

Advantages

- Mild reaction conditions
- High reactivity and selectivity
- Efficient heat transfer

- Facile separation of catalyst and products
- Continuous processing

Disadvantages - Cumbersome separation and recycling of catalyst - Product contamination

- Heat transfer problems
- Low reactivity and selectivity

The Role of Green Catalysis

The increasing use of catalytic processes can substantially reduce waste at the source, resulting in primary pollution prevention.

Stoichiometric vs. Catalytic Oxidation

Stoichiometric: (The Jones oxidation)

3 PhCH(OH)CH₃ + 2 CrO₃ + 3 H₂SO₄
$$\longrightarrow$$
 3 PhCOCH₃ + Cr₂(SO₄)₃ + 6 H₂O
Atom efficiency = 120 x 3/122 x 3 + 100 x 2 + 98 x 3 = 360 / 860 = 42 %

Catalytic: PhCH(OH)CH₃ + 1/2 O₂
$$\longrightarrow$$
 PhCOCH₃ + H₂O
Atom efficiency = 120 / 122 + 16 = 120 / 138 = 87%

Atom-efficient Catalytic Processes

Hydrogenation:

$$O$$
 + H_2 Catalyst Ar OH

100 % atom efficient

Carbonylation:

100 % atom efficient

Oxidation:

$$H$$
 OH $+$ $1/2 O_2$ $Catalyst$ Ar $+$ H_2C

87 % atom efficient

Brønsted-Acid Catalysis

Caprolactam Formation; Beckmann Rearrangement

$$H_2SO_4$$
 H_2SO_4
 H_2O
 O^+H_2
 O

Lewis-acid Catalysis

- -Initial coordination of a Lewis acid occurs to the basic site of the substrate.
- -The Lewis acid plays the key role to determine the overall reaction path by controlling the generation and trapping of the cationic species.
- -The Lewis acid decides also the nature of the cationic species generated, an ion pair or a loosely bound covalent species or somewhere in-between.
- -Lewis acid-base catalysis reactions are becoming of increasing importance in current organic synthesis.

The Mukaiyama Aldol Reaction

Asymmetric Aldol Reaction in Water

CHO + O ligand (5 mol%) OH O
$$Zn(OTf)_2$$
 (5 mol%) Ar H_2O , rt yield = 98 % de = 90%, ee = 94% ONH H

J. Paradowska, M. Stodulski, J. Mlynarski, Adv. Synth. Catal., 2007, 349,1041

Asymmetric Aldol Reaction in Water

This reaction does not require any organic solvent

 $Sc(DS)_3 = Sc[O_3S(CH_2)_{10} CH_3]_3$ PI-Pd = polymer incarcerated palladium; BTF = benzo triffluoride

M. Kokubo, C. Ogawa, S. Kobayashi, *Angew. Chem. Int. Ed.* 2008, *47*, 6909-6911.

Asymmetric Diels-Alder Reaction

Y. Sudo, D. Shirasaki, S. Harada, A. Nishida *J. Am. Chem. Soc.*, 2008, *130*, 12588-12589.

Asymmetric Hetero-Diels-Alder Reaction

H. Furuno, T. Hanamoto, Y. Sugimoto, J. Inanaga, Org. Lett. 2000, 2, 49-52

Asymmetric Allylation of Hydrazono Esters with Allylboronates in Aqueous Media

M. Fujita, T. Nagano, U. Schnieder, T. Hamada, C. Ogawa, S. Kobayashi, J. Am. Chem. Soc. 2008, 130, 2914-2915

Metathesis

Nobel Laureates in Chemistry, 2005

Yves Chauvin

Richard Schrock

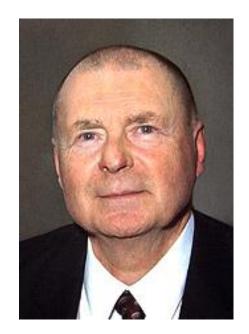
Robert Grubbs

- more efficient (fewer reaction steps, fewer resources required, less wastage),
- simpler to use (stable in air, at normal temperatures and pressures) and
- environmentally friendlier (non-injurious solvents, less hazardous waste products).
- This represents a great step forward for "green chemistry", reducing potentially hazardous waste through smarter production. Metathesis is an example of how important basic science has been applied for the benefit of man, society and the environment.

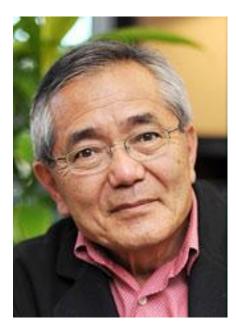
The Olefin Metathesis Reaction

F

 $(c-C_6H_{11})_3P$


G

 $(c-C_6H_{11})_3P$


Ph

Palladium-catalyzed Cross Couplings in Organic Synthesis


Nobel Laureates in Chemistry, 2010

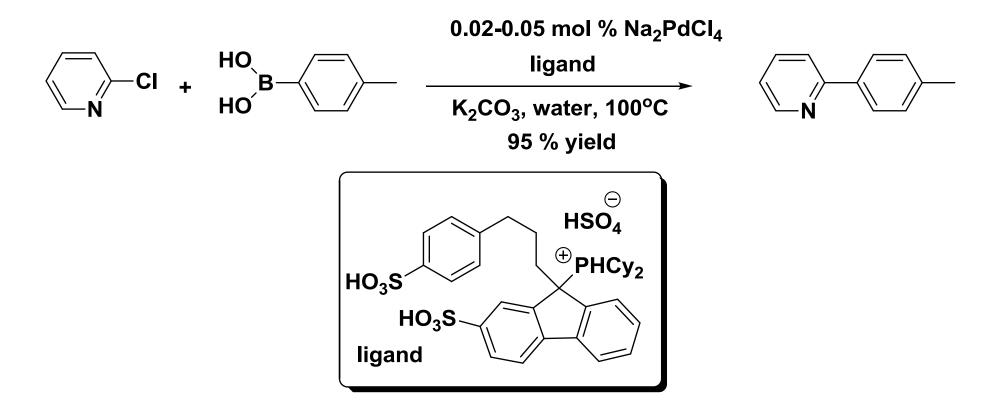
Richard F. Heck

Ei-ichi Negishi

Akira Suzuki

Palladium-catalyzed Cross Couplings

Heck reaction


Negishi reaction

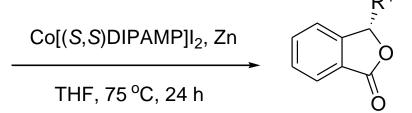
$$ZnCI + Br$$
 NO_2
 $Pd(PPh_3)_4$
 NO_2

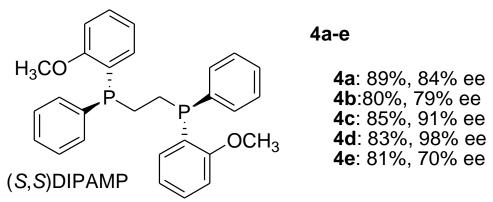
Suzuki reaction

$$F_3C$$
 \longrightarrow O $+$ Br \longrightarrow OCH_3 \longrightarrow $Pd(OAc)_2$ \longrightarrow F_3C \longrightarrow OCH_3

Suzuki-Miyaura Coupling in Water

Asymmetric Cyclization of o-lodobenzoates with Aldehydes Catalyzed by Cobalt Complexes


2a:
$$R^4 = Ph$$


2b:
$$R^4 = p - CH_3 - C_6H_4$$

2c: R4 =
$$p$$
- t -butyl-C₆H₄

2f:
$$R^4 = p$$
-Cl-C₆H₄

2g:
$$R^4 = p - CF_3 - C_6H_4$$

Palladium-catalized Asymmetric Allylic Amination

T. Nagano, S. Kobayashi, *J. Am. Chem. Soc.* 2009, *131*, 4200-4201

Click Reaction in Water

catalyst / ligand 5 mol % CuBr / 30 mol % PhSMe 5 mol % CuBr / 30 mol % PhSMe 5 mol % CuBr / 30 mol % PhSMe	solvent t- BuOH t- BuOH / H ₂ O (1:2) H ₂ O	time 1 h 10 min 5 min	yield % < 5 50 96				
				10 mol % CuBr / 30 mol % PhSMe	H_2^- O	5 min	97

F. Wang, H. Fu, Y. Jiang, Y. Zhao, *Green Chem.*, 2008, 10, 452-456.

Chloroauric Acid (HAuCl₄)-catalyzed Reaction in Water

58

43

5 h

C. Winter, N. Krause, *Green Chem.*, 2009, 11, 1309-1312.

10

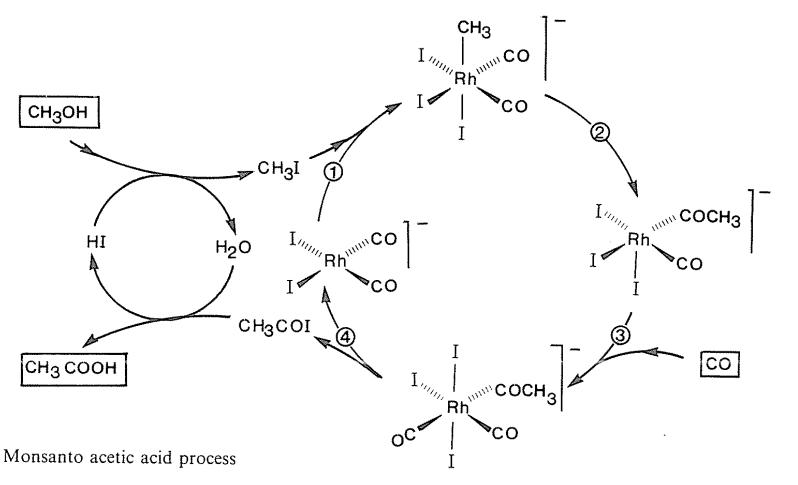
water (10 mL)

water (10 mL)

Production of Acetic Acid from Methanol and Carbon Monoxide

CH₃OH + CO
$$\rightarrow$$
 CH₃COOH Δ H = -136.6 kJ/mol

Brønsted Acid Catalysis

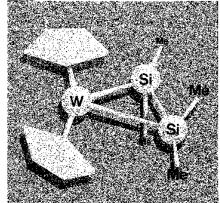

$$CH_3OH \xrightarrow{HI} CH_3I + H_2O$$

Transition-metal catalysis

Hydrolysis

$$CH_3COI + H_2O \longrightarrow CH_3CO_2H + HI$$

Monsanto Acetic Acid Process



Ch. Elschenbroich, A. Salzer

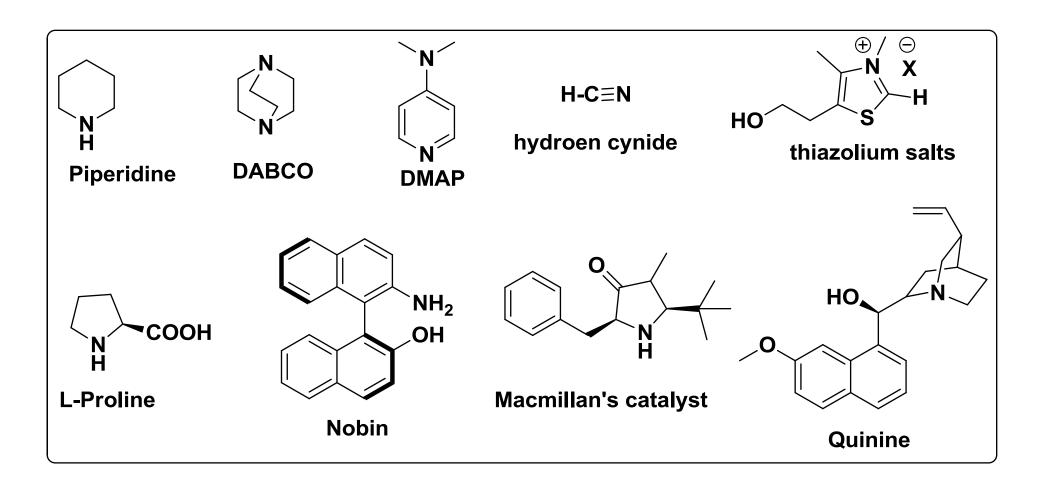
Organometallics

A Concise Introduction

Second, Revised Edition

What is Organocatalysis?

- A concatenation of the terms "organic" and "catalyst"
- In organic chemistry the term Organocatalysis refers to a form of catalysis, whereby the rate of a chemical reaction is increased by an organic catalyst consisting (mainly) of carbon, hydrogen, sulfur, nitrogen, oxygen, and phosphorus.
- Metal free catalysis

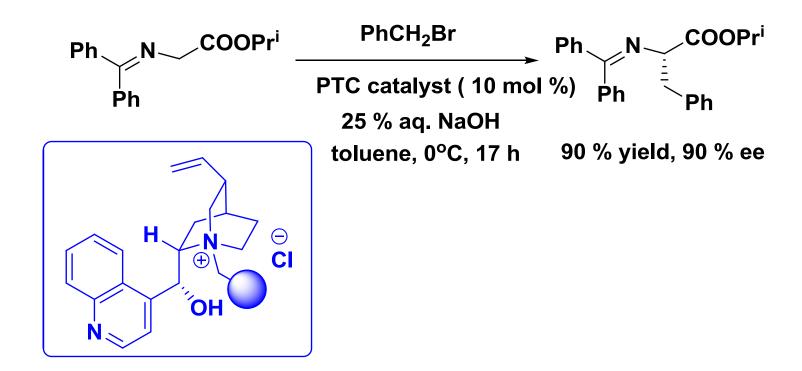

Primary Attractions of Organocatalysis

- Readily available.
- Non-toxic (environmentally benign).
- Inexpensive compared to metal-based catalysts.
- Inertness towards moisture and oxygen demanding reaction conditions (inert atmosphere, low temperatures, absolute solvents, etc,.) are usually not required.
- Absence of transition metals, attractive for synthesis of non-toxic pharmaceutical and agrochemical products.
- Biomimetic-induce cascade reactions.

Comparison with Conventional Catalysis

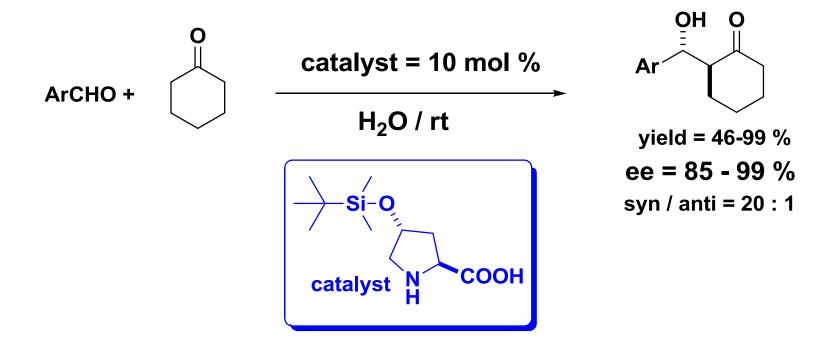
Type	Advantages	Disadvantages
Organometallic Catalysis	Wide substrate scope high catalytic activity	Tedious process, potential heavy metal pollution
Enzyme Catalysis	High selectivity and catalytic activity	Limited substrate scope usually single enantiomer
Organocatalysis	Simple structure, inexpensive, No natural molecules, nontoxic	

Achiral and Chiral Organocatalysts


Robinson Annulation

Early Organocatalysis:

Eder et al. Angew. Chem. Int. Ed. 1971, 10, 496-497


Z. Hajos, D. Parrish, *J. Org. Chem.* 1974, 39, 1615-1621

Easily Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

R. Chinchilla, P. Mazon, C. Najera, *Adv. Synth. Catal.*, 2004, *346*, 1186-1194; A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, *Chem. Rev.*, 2009, *109*, 418-514

Asymmetric Aldol Reaction with Homochiral Organocatalyst in Water

N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, J. Am. Chem. Soc., 2006, 128, 734.

Baylis-Hillman Reaction

Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589.

Michael Addition Reactions in Chiral Ionic Liquids

R = Me, Et, t-Bu, Ph, N_3 , SAc, OH, Br, CN

Ar = Ph, 4-CIPh, 2-CIPh, 4-MePh, 4-PhPh, 4-MeOPh, 4-NO₂Ph, 2-NO₂Ph, 1-Naph, Piperal

S. Luo, L. Zhang, X. Mi, Y. Qiao, J. –P. Cheng, *J. Org. Chem.*, 2007, 72, 9350-9352.

Enantioselective Synthesis of Highly Functionalized Octahydro-6-oxo-1-phenylnaphthalene-2-carbaldehydes via Organocatalytic Domino Reactions

OHC

R = H, CH₃

Ar

CHO

(1)

(2)
$$p$$
-TsOH (1.0 equiv)

CH₃CN

Ar

H

OHC

R

63-86% yield

>99% ee

B.-C. Hong,* R. Y. Nimje, J.-H. Liao, *Org. Biomol. Chem.* 2009, 3095–3101.

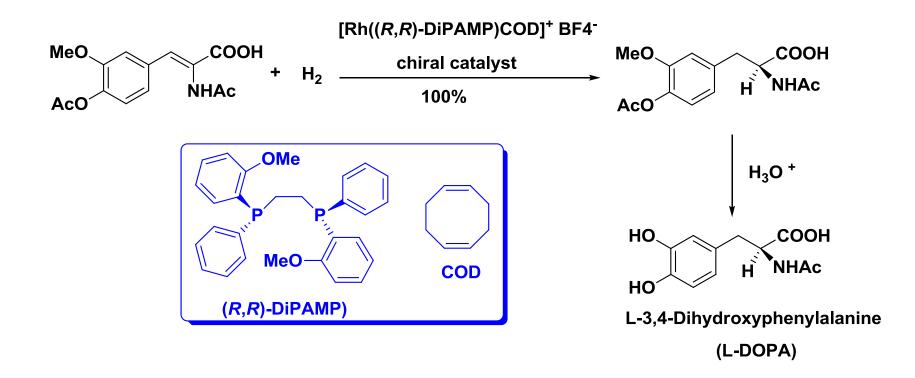
Enantioselective Total Synthesis of (+)-Conicol via Cascade Three-Component Organocatalysis

B.-C. Hong,* P. Kotame, C.-W. Tsai, J.-H. Liao *Org. Lett.* 2010, ASAP, DOI: 10.1021/ol902840x

Asymmetric Catalysis


Nobel Laureates in Chemistry, 2001

William S. Knowles


Ryoji Noyori

K. Barry Sharpless

MONOSANTO L-DOPA PROCESS

The first industrial catalytic asymmetric synthesis

(R)-BINAP-Ru-catalyzed Hydrogenation

HO
$$CH_3$$
 + H_2 (R) -BINAP-Ru(II) HO CH_3

Ar = aryl, L = ligand, X = Cl, Br, I

The (*R*)- BINAP-Ru-catalyzed hydrogenation of acetol to (*R*)-1,2-propanediol is currently used for the industrial synthesis of antibacterial levofloxacin

M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa, T. Otha, H.Takaya, R. Noyori, *J. Am. Chem. Soc.*, 1988, *110*, 629.

Catalytic Asymmetric Synthesis of (S)-Naproxen

Asymmetric Hydrogenation of Ketones

Ph CH₃ + H₂ (45 bar)
$$\frac{\text{Ru catalyst}}{t\text{-BuOK (0.45 mol\% Ph}} \stackrel{\text{OH}}{\xrightarrow{\frac{1}{2}}} \text{CH}_{3}$$
30 °C, 48 h i-PrOH 100% yield, 80% ee

Turnover number (TON) = 2400000

R. Noyori et al., *Angew. Chem. Int. Ed.,* 1998, *37*, 1703-1707.

Rhodium-catalyzed Asymmetric Hydrogenation in Water

OH

[Cp* RhCl₂]₂ (0.5 mol %)

1 (1 mol %) HCOONa (5 eq.)

$$H_2O$$
, 28 °C, 17 h

conversion = 97 %;
ee = 97 % (R)

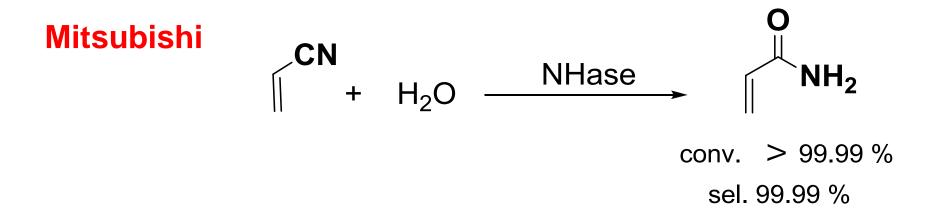
 H_2N
 H_2N

K. Ahlford, J. Lind, L. Maler, H. Adolfsson, Green Chem., 2008, 10, 832-835.

Asymmetric Epoxidation of Alkenes

N. H. Lee, A. R. Muci, E. N. Jacobsen, *Tetrahedron Lett.*, 1991, 32, 5055-5058. D. Bell, M. R. Davies, F. J. L. Finney, *Tetrahedron Lett.*, 1996, 37, 3895-3898.

Industrial Applications of Biocatalysts


Why Biocatalysis....?

- Mild conditions
- Ambient temperature
- Pressure and physiological pH
- Fewer steps (avoids protection/deprotection steps)
- Largely avoids toxic/hazardous reagents & solvents
- High chemo-, regio-, and stereoselectivities

D-Fructose-6-phosphate Aldolase-Catalyzed One-Pot Synthesis of Iminocyclitols

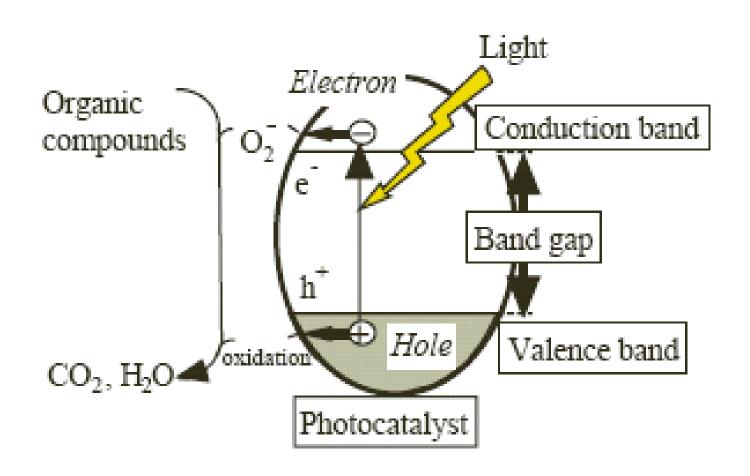
M. Sugiyama, Z. Hong, P. H. Liang, S. M. Dean, L. J. Whalen, W. A. Greenberg, C. -H. Wong, *J. Am. Chem. Soc.*, 2007, 129, 14811-14817

Biocatalytic production of Acrylamide

- 100,000 tons per annum and still increasing
- Simpler than chemical process (Cu-catalyst)
- Immobilized whole cells of Rh. rhodocrous J1
- Mild conditions (5 °C); no polymerization inhibitor needed
- high product quality.

Biocatalytic Hydrolysis of Nitriles

NC
$$+$$
 H₂O $-$ NHase NC $+$ NC NH₂ herbicide intermediate 96 % sel.


- Immobilized whole cells of P. chlororaphis B23
- Catalyst consumption 0.006 kg/kg product
- •Higher conversion/selectivity than chemical process (MnO₂ cat. / 130 °C)

Photocatalysis

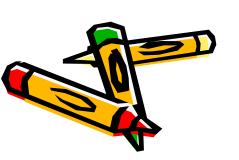
The phenomenon by which a relatively small amount of light-absorbing material, called a photocatalyst, changes the rate of chemical reaction without itself being consumed.

Photocatalysis by TiO₂ has been investigated for decades since the first report by Fujishma and Honda in 1972.

Mechanism of Photocatalysis

Conclusion

Recent Advances in Green Catalysis


Brønsted Acid-Base Catalysis
Lewis Acid-Base Catalysis
Transition-metal catalysis
Organocatalysis
Asymmetric Catalysis
Biocatalysis

Acknoledgements

劉廣定教授 甘魯生教授 周德璋教授 趙奕姼教授 鄭建鴻教授 洪伯誠教授

Thank You for Your Attention

敬請指正

