聲明

本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 [如本頁取材自〇〇〇教授演講內容]。

綠色/永續化學的內涵、 歷史、現狀與面臨的挑戰

中央研究院化學所趙奕姼

綠色/永續化學之內涵

The <u>design</u> of products and processes that reduce or eliminate the use and generation of hazardous substances

綠色化學之父: Paul Anastas and John C. Warner

綠能及綠色化學電子月刊 第二期(August, 2010)

C&E News October 4, 2010

在Berkeley Green Chemistry Center之演講 http://www.youtube.com/watch?NR=1&v=mrSy6RKOge8

綠色/永續化學之內涵

The <u>design</u> of products and processes that reduce or eliminate the use and generation of hazardous substances

- 著重於安全與避免毒害物質之使用與產生
- 著重於 "Reduction"的概念 (materials, waste, energy, cost, hazard and risk, non-renewables, environmental impact)
- 不等同於環境化學
- 不僅是找尋新能源材料
- 強調 "Design" (Smart Chemistry)

綠色化學與環境化學之涵蓋範圍

綠色化學

- 有機化學
- 無機化學
- 生物化學
- 分析化學
- 物理化學

環境化學

- 大氣化學
- 土壤化學
- 水化學
- 分析化學

綠色化學帶來的思考模式改變

風險 = 毒害 × 暴露次數

Risk = f(hazard x exposure)

向來以立法的方式控制

綠色化學之精神從源頭減少毒害

- 1987年聯合國環境與發展委員會提出:
 - "...meeting the needs of the present without compromising the ability of future generations to meet their own needs"
- 1990年美國通過「污染防制法案」:建立 由源頭預防或降低污染之國家政策。
 - 美國環境保護署提出「Green Chemistry」一詞。
 - 在歐洲許多國家使用「Sustainable Chemistry」。
- 綠色/永續化學的蹤跡:美國 英國 日本 義大利 澳洲 加拿大 德國 中國 韓國 印 度 其他

2020 Sustainability Goals

Zero Waste: eliminate the concept of waste in product, process, materials and energy

Zero Toxic Substances: eliminate substances known or suspected to be harmful to human health or the health of biological systems

100% Closed Loop Processes: take 100% responsibility for our products at all stages of our product and process lifecycle

Sustainable Growth and Profitability: create an economy the planet is capable of sustaining indefinitely

(Zero Waste Alliance, 2001)

- 'Green chemistry' movement sprouts in colleges, companies The New York Times March 25, 2009
 - The University of Oregon began an outreach program nine years ago that teaches professors nationwide about integrating green chemistry into a curriculum.
 - ...balancing environmental, social and economic decisions. Many universities are responding by creating a green-chemistry curriculum. Their efforts require addressing a fundamental problem in chemistry education: a lack of toxicology training.

- 'Green chemistry' movement sprouts in colleges, companies The New York Times March 25, 2009
 - ...get the market working properly, ...demand for trained chemists who understand green chemistry and toxicology will ramp up. Universities will respond, as will research.
 - Green chemistry applications make up 1 percent of the total chemical market share. ...the field has tremendous potential for growth.
- 學校老師未開課, UC Berkeley的學生自行安排課程:

Green Chemistry and Sustainable Design

http://sites.google.com/site/berkeleygreenchemistry/Home

■ 一般學校打先鋒 近來超級名校加入

- University of Oregon
- University of Massachusetts
- University of Scranton
- Hendrix College
- St. Olaf College
- University of York (UK)
- Monash University (Australia)
- Carnegie Mellon
- University of Illinois, Urbana-Champaign....

- Center for Green Chemistry & Green Engineering at Yale (2007; First Director: Paul Anastas)
- The Berkeley Center for Green Chemistry (2009) A collaboration among the College of Chemistry, Haas School of Business, School of Law, College of Natural Resources, and School of Public Health

- Presidential Green Chemistry Challenge Awards (USA EPA 1996)
 - Greener Synthetic Pathways Award
 - Greener Reaction Conditions Award
 - Designing Greener Chemicals Award
 - Small Business Award
 - Academic Award
- The European Sustainable Chemistry Award (EuCheMS 2010)
 - Alternative Synthetic Pathways
 - Alternative Feedstocks
 - Alternative Reactor Design and Reaction Condition
 - Design and Use of Less Hazardous Chemicals and Chemical Products

Presidential Green Chemistry Challenge Awards

Annual benefits derived from the technologies implemented by the past 82 winners

- Eliminating 199 million lb of hazardous chemicals and solvents
- Saving more than 21 billion gal of water
- Avoiding 57 million lb of carbon dioxide emissions

C&EN **2011**, 89(26), 11. http://cen.acs.org/articles/89/i26/2011-Green-chemistry-Awards.html

■ IUPAC Green Chemistry Directory中整理了其他國家之相關獎項(如:澳洲、英國、日本)
http://www.incaweb.org/transit/jupacqcdir/awards.htm

Joseph Breen Memorial Fellowship

 Sponsors a young international green chemistry scholar to participate in an international green chemistry technical meeting, conference, or training program.

"Young" international scholar: undergraduate students, graduate students, post-docs, and above, but below the level of Assistant Professor and within the first seven years of a professional career.

ACS Summer School on Green Chemistry and Sustainable Energy

- Graduate students and postdoctoral scholars
- Presentation files available on line!

On-Line Learning

- ACS course: Toxicology for Chemists
- Free ACS webinar: Green Chemistry
 Series

Webinar

- Green Chemistry: Innovation and Application for the New Decade
- Green Chemistry and Renewable Energy Two Peas in a Pod
- Going Green in the Chemistry Teaching Laboratory

Free App

Green Solvent

- 值得觀察與瞭解的組織:
 - ACS Green Chemistry Institute (美)
 - The Nexus Newsletter
 - ACS GCI Industrial Roundtables
 - ACS GCI Pharmaceutical Roundtable
 - ACS GCI Formulator's Roundtable
 - ACS GCI Chemical Manufacturer's Roundtable
 - Warner-Babcock Institute for Green Chemistry (美)
 - SusChem (歐)
 - Strategic Research Agenda /Implementation Action Plan

Pharmaceutical Roundtable

加入Roundtable之企業討論出以下之項目 應優先找「綠色途徑」,並向外徵求研究計畫

- Amide formation
- OH activation
- Amide reduction
- Green Mitsunobu reactions
- Oxidation/Epoxidations
- C-H activation of aromatics
- Chiral amine synthesis

- Asymmetric hydrogenation
- Green fluorination methods
- N-centered chemistry

Outside the reaction theme

- Solvent-less reactor cleaning
- Green alternatives to dipolar aprotic solvents

Journals

- Green Chemistry (RSC) 2010 impact factor: 5.472
- Green Chemistry Letters and Reviews (Taylor & Francis)

Green Chemistry

ChemSusChem (Wiley) 2010 impact factor: 6.325

Since 1999 Since 2007

Since 2008

面臨的挑戰

Alternative feedstocks

- Move from petroleum to renewable or biologically derived sources
 - Petroleum chemistry => need oxidation chemistry
 - Sugar => need reduction chemistry
- CO₂ => need new catalysts

Alternative solvents

- No solvent (neat solution; grinding)
- Supercritical CO₂, ionic liquid...

Alternative synthetic pathways

- New catalysts
- Move to biocatalysts (no toxic metals; intrinsically safer)
- Research into reuse and recycling catalysts still in infancy

面臨的挑戰

- Education
- When to use what metrics
- Lack of toxicology training
- Address the problems of waste, toxicity, energy consumption altogether, rather than individually.

Key References

- Beach, E. S.; Cui, Z.; Anastas, P. T. "Green Chemistry: A Design Framework for Sustainability" *Energy Environ. Sci.* 2009, 2, 1038-1049.
- Tundo, P.; Aricò F. "Green Chemistry on the Rise: Thoughts on the Short History of the Field" Chemistry International 2007, 29(5)
- Anastas, P. T.; Kirchhoff, M. M. "Origins, Current Status, and Future Challenges of Green Chemistry" Acc. Chem. Res. 2002, 35, 686-694.
- Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. "Green Chemistry: Science and Politics of Change" Science 2002, 297, 807-810.
- Constable. D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L. Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. "Key Green Chemistry Research Areas—A Perspective from Pharmaceutical Manufacturers" *Green Chem.* 2007, 9, 411-420.

Good Starting Points

Website

- ACS Green Chemistry Institute
- ACS Summer School on Green Chemistry
- 綠色/永續化學網路資源共享網

Book

Green Chemistry: An Introductory Text (2nd Ed.)
 by Mike Lancaster

Course materials

■ 永續性有機製備 請向台大化學系劉廣定教授索取 ktliu@ntu.edu.tw

More Advanced Materials

Philip Jessop's

Presentations about metrics and solvents

(Presentations in 2011 ACS Summer School on Green Chemistry)

- Choosing the Greenest Synthesis
- Green Solvents

Perspective about solvents

 Green Chem. 2011, 13, 1391–1398

Philip Jessop's Talk about Green Solvent

OUTLINE

- Reducing the Impact of Solvents
- Solvent Properties
- Greener Conventional Solvents
- 4. Unconventional Solvents
 - Ionic Liquids
 - Liquid Polymers
 - Switchable Solvents
 - Supercritical Fluids
 - Gas-Expanded Liquids
- Conclusions

More Advanced Materials

Paul T. Anastas's articles

- Toward a Comprehensive Molecular Design Framework for Reduced Hazard Chem. Rev. 2010, 110, 5845–5882
- Towards Rational Molecular Design: Derivation of Property Guidelines for Reduced Acute Aquatic Toxicity

Green Chemistry 2011, DOI: 10.1039/c1gc15651a

 Toward Molecular Design for Hazard Reduction— Fundamental Relationships between Chemical Properties and Toxicity

Tetrahedron **2010**, *66*, 1031–1039

John C. Warner引發的感想

- 看清事情的本質
 - 化學家不熟悉毒物學毒理學所遭致的後果
- 開放心胸向周遭學習
 - Non-Covalent Derivatization
- 整體性的思考
 - Economy, Environment, Society
- ■創造性的行動力
 - Presidential Challenge Award
 - Academic Green Chemistry Program
 - Warner-Babcock Institute for Green Chemistry
 - Beyond Benign
 - iSUSTAIN

- 劉廣定教授廖俊臣教授
- 甘魯生教授劉陵崗教授
- 林育靜小姐
- 陳秋雲小姐
- ■施玉枝小姐
- 蕭竣先生
- ■中國化學會
- 中央研究院化學研究所
- 清華大學化學系
- ■國科會化學中心

周德璋教授

凌永健教授

曹春梅小姐