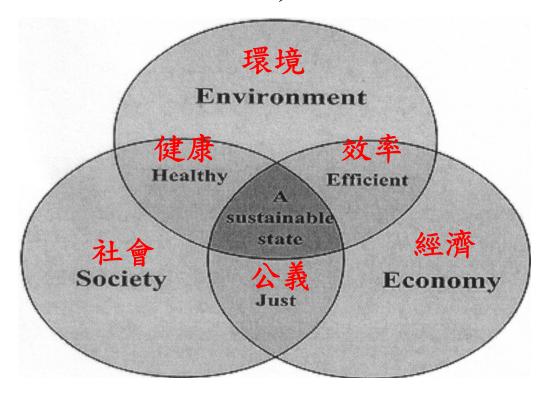
聲明

本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 [如本頁取材自〇〇〇教授演講內容]。

永續化學合成(3) 非傳統反應方法與溶劑

劉廣定

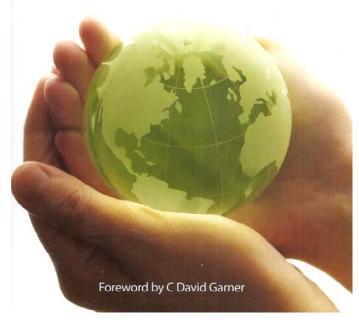
(ktliu@ntu.edu.tw)


December 2, 2011

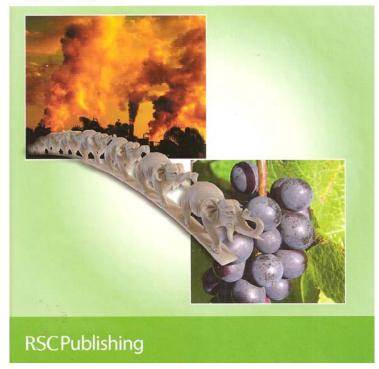
永續發展

Sustainable development

1993年聯合國成立永續發展委員會,宣導加強認識自然,保護環境之觀念外,並採積極的態度以創新之發明與設計來促成世界進步,俾使環境、經濟和社會資源得以同時持續發展。保護與發展相輔相成,世界將可成為「永續之土」(A sustainable state)。



永續世界的難題(人口增長,能源供應,氣候異變,資源枯竭,糧食貯備,環境汙染)多方面涉及化學


A Healthy, Wealthy, Sustainable World

John Emsley

Chemistry for Sustainable Technologies A Foundation

Neil Winterton

合成化學工作者如何應對?

- •「節能、減碳」與「環境保護」是不夠的
- 當前的目標應是「節能、減廢、增效、維安」
- · 合成和製備的反應若能提高產率、增加選擇性、簡化操作、使用無危險性試劑、減少廢棄物、或…,也是不夠的。

反應方法、條件、試劑、溶劑、觸媒等都能盡量配合永續化學十二原則與次原則*才是永續化學合成 (sustainable chemical synthesis)

Winterton, *Green Chem.* **2001**, *3*, G73-5

Characteristics for ideal chemical synthesis

- Simplicity
- Safety, environmentally benign processes
- High yield and selectivity, material efficiency
- Low E-factor, less wastes
- Energy efficiency
- Use of renewable and recyclable reagents
- Use of renewable and recyclable solvents etc.

永續化學合成

Sustainable chemistry is the design, manufacture, and use of environmentally benign chemical products and processes to prevent pollution, produce less waste, and reduce environmental and human risks. (OECD, 1999)

採用非傳統反應活化方法,溶劑,反應物…以求減少(reduce)

- Cost
- Energy
- Environmental impact
- Hazards
- Materials
- Non-renewables
- Risk
- Waste

永續化學之合成反應

不要到「收成」階段才考慮「永續」,從實驗室的「研究」開始即須注重。

Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry

Klaus Kümmerer Green Chem. 2007, 9(8), 899

Taking into account the full life cycle of chemicals will lead to a different understanding of the full functionality necessary for a chemical. Examples are presented to underline the feasibility and the economic potential of the approach benign by design.

Methods for promoting reactions

Energy methods System requires

Thermo chemistry Heating

Photo chemistry Chromophore, light source

Electro chemistry Conducting media

Piezo chemistry High pressure

Sono chemistry Ultrasound source

Microwave chemistry Polar media, microwave source

Mechano chemistry Solid, mill-grinding

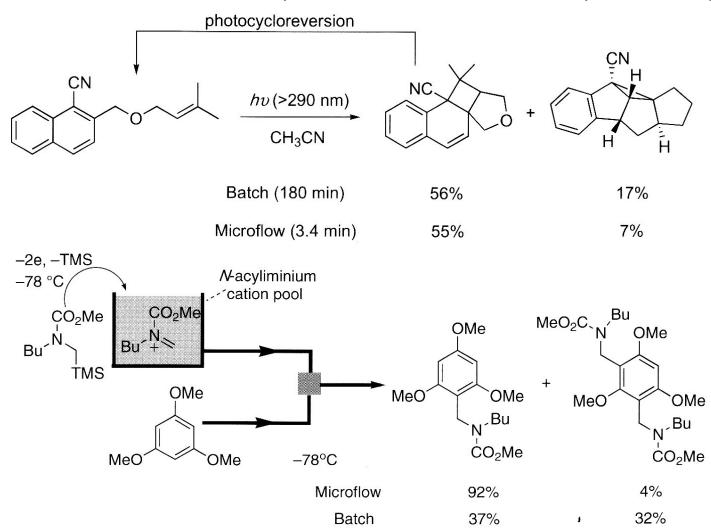
Energy efficiency (the 6th principle) and other factors, such as feasibility, should be considered.

A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis (Moseley and Kappe, *Green Chem.* **2011**, *13*, 794-806)

Microwave chemistry can be more energy efficient compared with conventional heating methods, but not always.

More effective methodologies

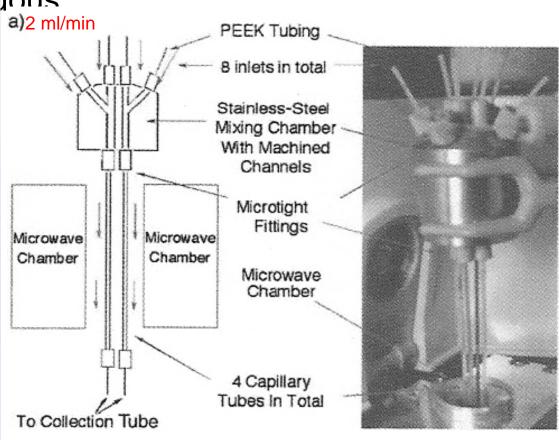
• Design multi-component reactions (MCR)


Green Chem. 2011, 13, 3248-3254

A recent review:

Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis

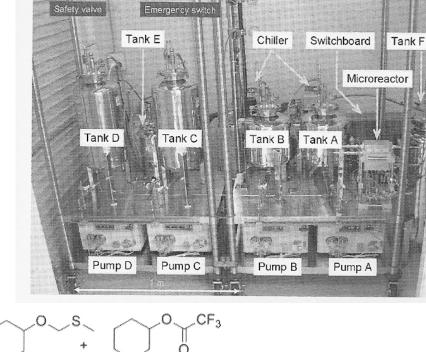
• Microreactors, Continuous flow, flash synthesis

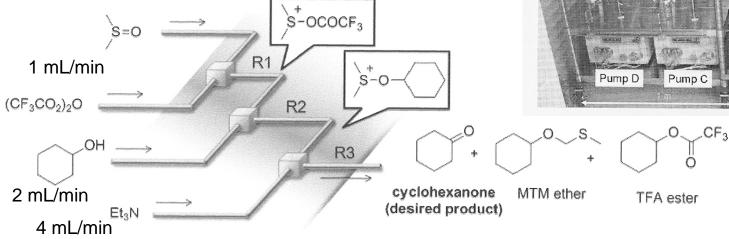


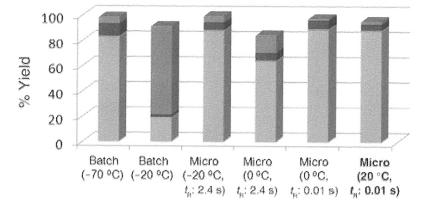
Microreactors

Time- and space- saving

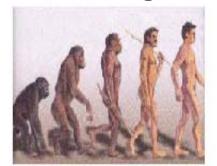
an 8-channel reactor

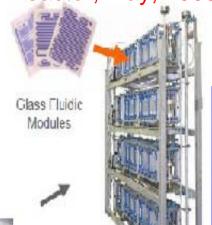



Chem. Eur. J. 2008, 14, 7450-7459


tubing (d/1.150 mm)

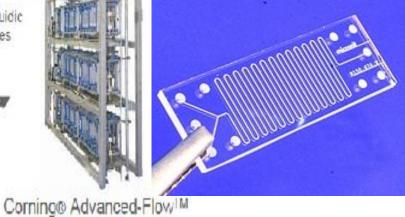
Swern-Moffat oxidation


(ChemSusChem 2011, 4, 331-340)


- TFA ester
- MTM ether
- cyclohexanone

^{*}t_s: residence time in R1

Corning Advanced-Flow Reactor, May, 2009


唯有永續化學能使化學永續

Glass Reactor

Channel with 150 x 150 μ m (Wikipedia)

Alchemy

Today's Industrial Manufacturing

Georgia Tech to Use Corning Advanced-Flow Reactor in Synthesis Research since April, 2010 Ceramic reactor, announced June, 2011

Recent reviews:

Cross-coupling in flow (*Chem. Soc. Rev.*, **2011**, *40*, 5010–5029)

Green and Sustainable Chemical Synthesis using Flow Microreactors (*ChemSusChem* **2011**, *4*, 331-340)

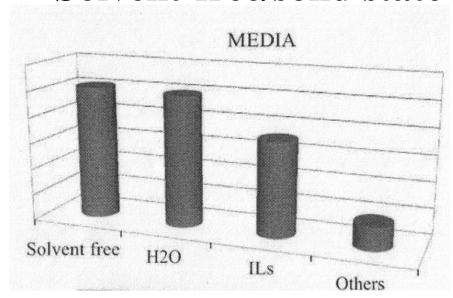
A Versatile Lab to Pilot Scale Continuous Reaction System for Supercritical Fluid Processing (*Org. Process Res Dev.* **2011**, *15*, 1275-1280) Continuous flow reactors: a perspective

(Green Chem. 2011, DO1:19.1039/clgc16022b), and many more

Controlled RAFT Polymerization in a Continuous Flow Microreactor

Controlled radical polymerization using the reversible addition-fragmentation chain transfer approach (RAFT) was successfully conducted under continuous flow processing conditions, provided that steel tubing was used to prevent quenching of the radical process by oxygen. A series of different monomers, including acrylamides, acrylates, and vinyl acetate, were polymerized to high conversions (between 80 and 100%) at temperatures between 70 and 100 C using various initiators, solvents, and RAFTagents.

• The methodology provides a facile, alternative scale-up route to conventional


batch polymerization.

Org. Process Res Dev. **2011**, *15*, 593-601

Solvent-free/solid state reactions

2008 論文相對數量分析 (Green Chem. Lett. Rev. **2010**, 3, 105-113)

Can be applied to solid-solid, solidliquid, solid-gas, liquid-liquid, and liquid-gas reactions

Recent literatures:

Solid-state dynamic combinatorial chemistry; mechanosynthesis (*Chem. Sci.* **2011**, *2*, 696-700)

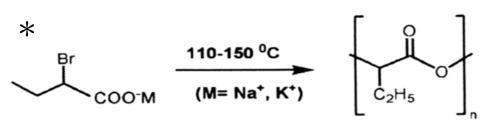
Ball milling in organic synthesis (*Chem. Soc. Rev.* **2011**, *40*, 2317-2329)
Three-component solvent-free synthesis of highly substituted tetrahydroimidazo[1,2-a]pyridines (*RSC Adv.* **2011**, *1*, 596-601)
Electrochemical allylation of aldehydes in a solvent-free cavity cell with a graphite powder cathode (*Green Chem.* **2011**, *13*, 1118-1120) and many more

Solvent-free reactions without generating hazardous by-product is a clean technology

IUPAC definations

Mechano-chemical reaction: a chemical reaction that is induced by the direct absorption of mechanical energy.

Mechanochemistry: breakage of covalent bonds, ionic bonds or lattice as well as crystal packing on mechanical stress.


Metal complex formation

Nickel nitrate and phenanthroline

Solvent-free polymerization

No polymerization if M = other cations

Chem. Soc. Rev. 2007, 36, 1239-1248

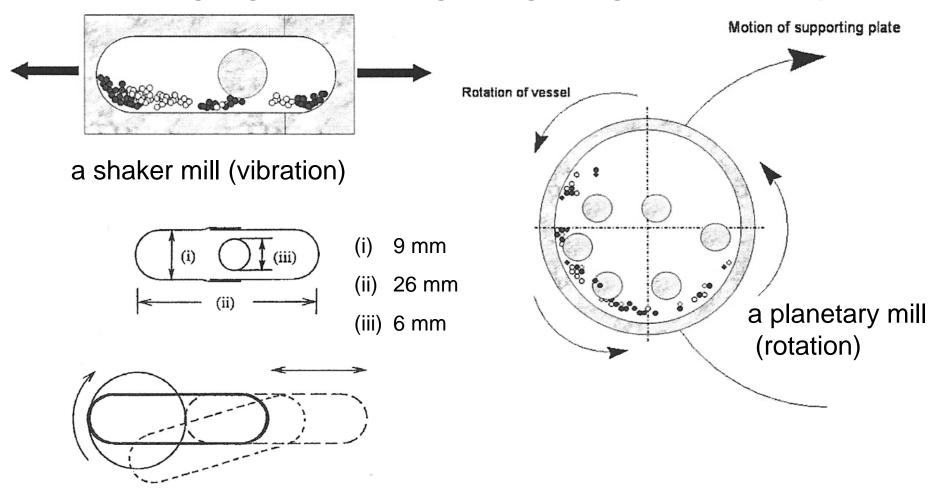
solid

* [Zn]— $N(SiMe_3)_2$ + HOBn (a)

polymer

$$\longrightarrow$$
 $[Zn]$ — OBn + HN(SiMe₃)₂

$$[Zn]$$
— OBn;OPol + n OOO (b)


$$k_i, k_p$$
 O OBn; OPol

$$[Zn] = Zn(bdi) =$$

Chem. Eur. J. 2008, 14, 8772

Mixing in Mechanochemistry

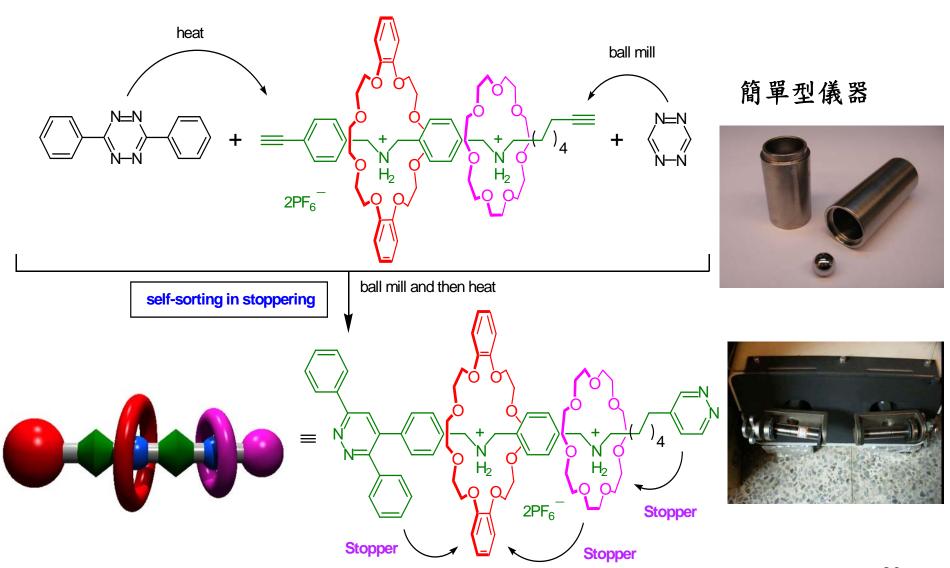
Method of mixing might be manual grinding, using a ball mill or a pan mill.

HSVM (High speed vibration mill) at the speed of 3500 rpm by Komatsu et al. A pressure of 10-20000 bar may be generated.

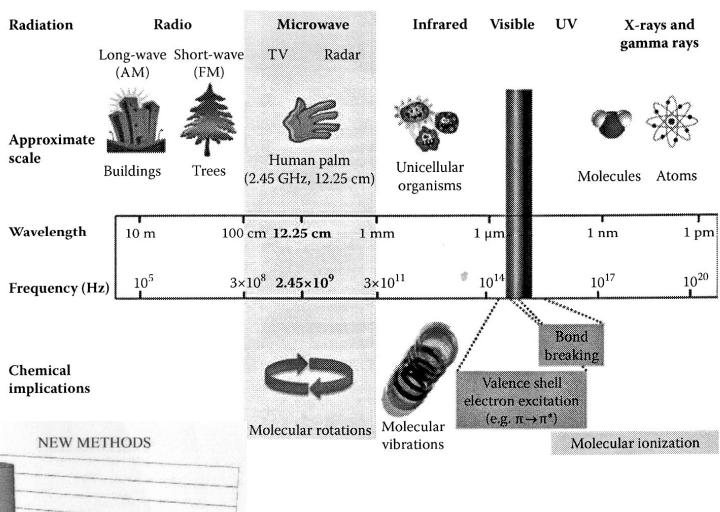
- Diversity of ball milling instruments:
- planetary ball mills (1)

• > mixer mills (2)

vibration mills (3)


- (1) http://www.fritsch.de/de/probenaufbereitung/produkte/mahlen/plar
- (2) http://en.wikipedia.org/wiki/File:8000M_Mixer_Mill_%28open%29_
- (3) http://www.chemie.de/content/images/articles/retsch-milling-4.jpg.

Hetero[3]rotaxane under solvent-free condition



Microwave

Photochemistry

Ultrasounds

Microwave Irradiation

2008 論文相對數量分析 (Green Chem. Lett. Rev. 2010, 3, 105-113)

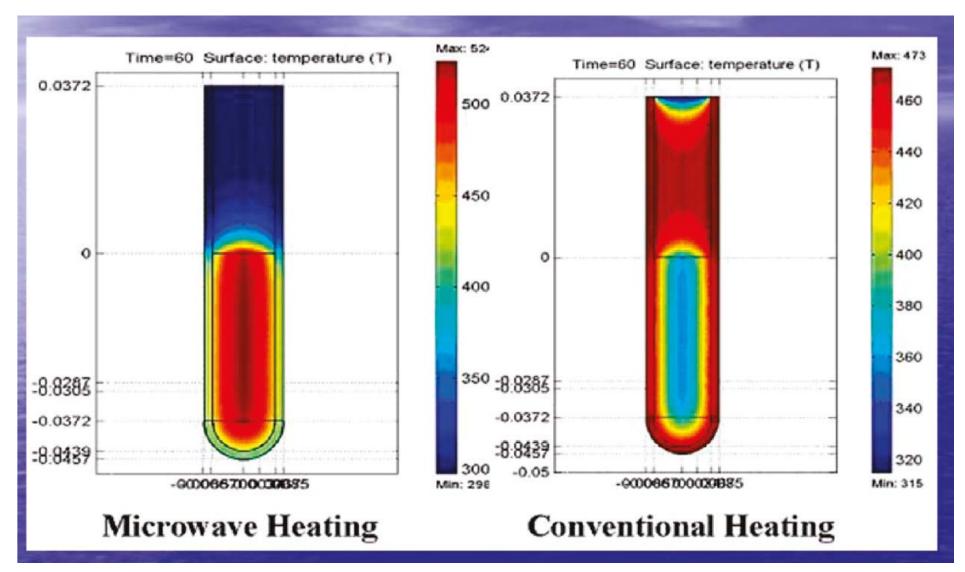
COST Chemistry Action D32

(COST = <u>Co</u>-opération Européenne dans le Recherche <u>S</u>cientifique et <u>T</u>echnique, European Co-operation in the Field of Scientific and Technical Research)

Four microwave-based working groups involving collaboration between scientists with different expertise in modern technology:

- 1. Diversity oriented synthesis under high efficient microwave conditions.
- 2. Microwave and high-intensity ultrasound in the synthesis of fine chemicals.
- 3. Ultrasound and microwave-assisted synthesis of nanometric particles.
- 4. Development and design of reactors for microwave-assisted chemistry in the laboratory and on the pilot scale.

The objective of COST D32 is to establish a firm EU base in microwave chemistry and to exploit the new opportunities provided by microwave techniques singly or in appropriate combination, for the widest range of applications in modern chemistry. (starting in 2004)


Cann (Ed), *Microwave Heating as a Tool for Sustainable Chemistry*, 2011,CRC Reviews:

Microwave-Assisted Synthesis of Ag Nanostructures (*Accounts*, **2011**, *44*, 469-478) Variable Microwave Effects in Synthesis, the Role of Heterogeneity (*Org. Process Res. Dev.* **2011**, *15*, 140-147)

Scale-Up of Microwave-Assisted Reactions in a Multimode Bench-Top Reactor₂₂ (*Org. Process Res. Dev.* **2011**, *15*, 841-854)

Heating after 60 s

Super-heating and Loss tangents

				
Solvent	B.p./ °C)	B.p. MW/°C	Difference	$ an \delta$
Water	100	105	5	0.123
Ethanol	79	103	24	0.941
Methanol	65	84	19	0.659
Dichloromethane	40	55	15	0.042
Tetrahydrofuran	66	81	15	0.047
Acetonitrile	81	107	26	0.062
Propan-2-ol	82	100	18	0.799
Acetone	56	81	25	0.054
Ethyl acetate	78	95	17	0.059
Dimethylformamide	153	170	17	0.161
Ť				

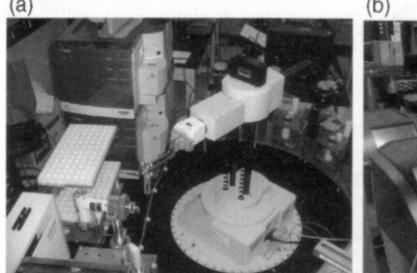
^{*}Solvents can be classified as high (tan $\delta >$ 0.5), medium (tan δ 0.1- 0.5) and low (tan $\delta <$ 0.1) microwave absorbing. (tan $\delta = \delta$ "/ δ ")

Absorption of MW by Vessels

Loss tangents (tan δ) of low-absorbing materials 2.45 GHz, 25 °C

Material	$\tan \delta \ (\times 10^{-4})$	Material	$\tan \delta \ (\times 10^{-4})$	
Quartz	0.6	Plexiglass	57	
Ceramic	5.5	Polyester	28	
Porcelain	11	Polyethylene	31	
Phosphate glass	46	Polystyrene	3.3	
Borosilicate glass	10	Teflon	1.5	

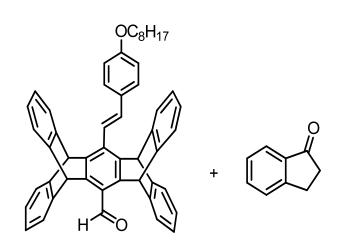
(Kappe, et al., Practical Microwave Synthesis for Organic Chemists, Wiley-VCH, 2009 p. 18)

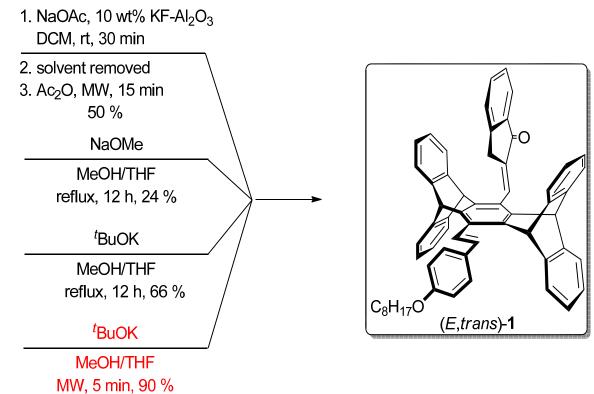

Microwave effects

thermal effects – dipolar polarization
superheating in a mw cavity
non-thermal effects – increasing pre-exponential factor A
decreasing activation energy

Robotic facility (Abbott Lab) (a) and

high throughput factory (Novartis) (b) (Kappe, et al., 2009, p. 117)


Laboratory scale preparations


簡單型儀器

Milestone START System

(Unpulished, courtesy of Professor J. S, Yang, 2011)

(Table 5.3) General Summary of Reaction Classes Suitable for Microwave Scale-Up

	Beneficial/Suitable	No Benefit/Unsuitable
Major reaction classes	Additions condensations	Amide bond formation
	Alkylations/acylations	Deprotections (excluding
	Heterocycle formation	hydrogenations)
	Hydrogenations	Functional group additions
	S _N Ar reactions	Functional group interconversions
		Protection reactions
Minor reaction classes	Cycloadditions	Grignard reactions
	Friedel-Crafts reactions	Low-temperature organometallic
	Metal-catalyzed reactions	reactions (e.g., lithiation)
	(e.g., Heck and Suzuki	Oxidations
	couplings)	Reductions (metal hydrides,
	[Peptide synthesis] ^a	excluding hydrogenations)
	[Polymer synthesis] ^b	
	Thermal rearrangements	
Other reaction parameters	Autoclave/pressure reactions	
	Reactions with gases	
	Reactions with solid-support	
	reagents	
	Reactions with water as	
	solvent	
	Where thermodynamic product	
	required	

MW Heating as a tool for Polymer Chemistry

3.1	Introd	uction	53
3.2	Use of	Alternative Solvents	55
	3.2.1	Microwave-Assisted Polymer Synthesis in Water	55
	3.2.2	Microwave-Assisted Polymer Synthesis in Ionic Liquids	
	3.2.3	Microwave-Assisted Polymer Synthesis Using Supercritical CO ₂	60
	3.2.4	Microwave-Assisted Polymer Synthesis Using Solvent-Free	
		Conditions	60
3.3	Use of	Alternative Feedstocks	. 62
3.4	Design	of Degradable Polymeric Materials	.64
3.5	Recyc	ling Polymers	.66
3.6	Conclu	ısions	68
Ackr	nowledg	gments	.68
Refe	rences		. 69
		(97 references)	

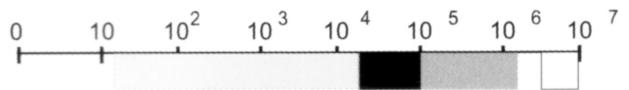
Cann (Ed), Microwave Heating as a Tool for Sustainable Chemistry, 2011, CRC

MW Heating as a Tool for the Undergraduate Organic Chemistry Laboratory

6.1	Introd	uction		149
			incorporation of Microwave Heating as a Tool in the	
	Under	graduate l	Laboratory	150
6.3			blished Teaching Materials Incorporating Microwave	
	Heatin	g into the	Undergraduate Laboratory	152
	6.3.1		Free Reactions	
	6.3.2	Reaction	ns Performed in Greener Solvents	159
	6.3.3		atalyzed Reactions	
	6.3.4	Addition	nal Reports in the Literature	165
	6.3.5		Organic Chemistry	
			Analytical Chemistry	
		6.3.5.2	Inorganic and Organometallic Chemistry	169
		6.3.5.3	Materials Chemistry	170
6.4	Conclu		narks	
			rences)	
		`	,	

Cann (Ed), Microwave Heating as a Tool for Sustainable Chemistry, 2011, CRC

MW Heating as a tool for Material Chemistry


8.1	Overview and Introduction	207
8.2	Microwave Heating for Preparation of Adsorbents	208
8.3	Microwave Heating for Preparation of Battery Materials	208
	Microwave Heating for Preparation of Ceramics	
	Microwave Heating for Preparation of Zeolite Materials	
	Examples of Other Materials Prepared Using Microwave Heating	
	Conclusions	
	rences(55 reference)	

Cann (Ed), Microwave Heating as a Tool for Sustainable Chemistry, 2011, CRC

Sonochemistry

Sound frequencies

Hz (cps)

Human hearing

Conventional power ultrasound

Extended range for sonochemistry

Diagnostic ultrasound

Cleaner with timer and heater

Less expensive

→ Ultrasound (supersound)

20Hz - 20kHz (Normally, 16Hz to 16kHz)

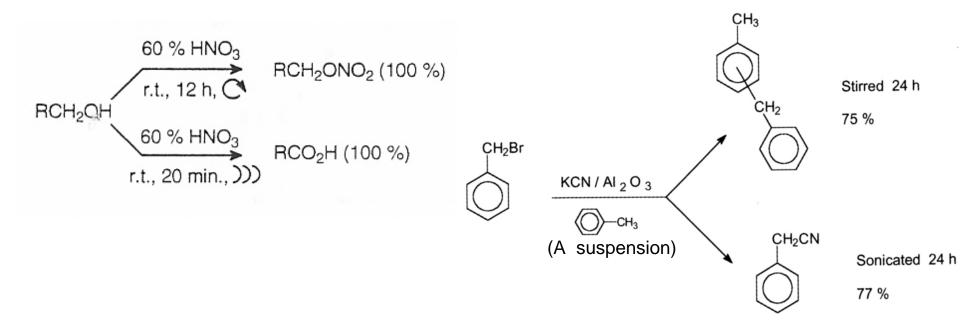
20kHz - 100kHz high input power (1-1000 W/cm²)
(Destructive)

20kHz ---2MHz

5MHz - 10MHz

ultrasound horn

(Non-invasive)


Low input power (mW/cm²)

more effective

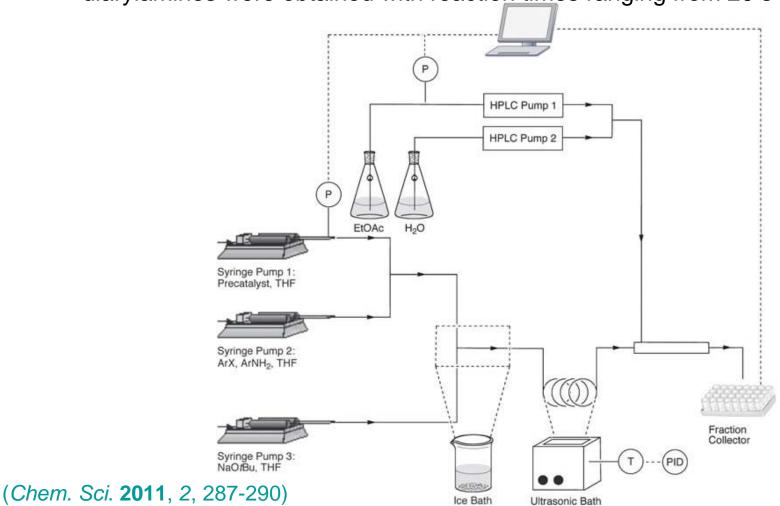
Sonochemical switching of pathways

For **true** sonochemical reactions (homogeneous or heterogeneous), formation of radical or radical-ion will be favored by ultrasound. But **false** sonochemical reactions (heterogeneous) are influenced by physical and mechanical properties of sonication (ultrasound agitation). Examples are:

Simple sonochemical protocols for fast and reproducible Grignard reactions

Green Chem., 2011, 13, 2806-2809

Ultrasonic activation of Heck type reactions in the presence of Aliquat-336


Without phosphine and base, Pd catalysts such as PdCl₂, Pd(OAc)₂ and PdCl₂(PhCN)₂ in water/DMF mixtures with Aliquat-336 proved to be excellent catalytic systems for Heck reactions involving several aryl bromides with styrene and acrylic compounds. Yields are remarkably improved under ultrasonic irradiation (40-60% to 84-91%)

ArBr +
$$H_2$$
C=CH-EWG \longrightarrow Ar-CH=CH-EWG.

Overcoming the clogging in flow by ultrasound

A continuous-flow palladium-catalyzed amination reaction was made possible through efficient handling of solids via acoustic irradiation. Various diarylamines were obtained with reaction times ranging from 20 s to 10 min.

Solvent alternatives

Water

Less-volatile solvents (including polymeric solvents)
Other benign solvents (ionic liquids, gas-expansion liquids, etc.)
Supercritical and near-(or sub-)critical fluid systems

Renewables (organic carbonates, glycerol derivatives, etc)

Freemantle, An Introduction to Ionic Liquids, RSC, 2010

From Molten Salts to Ionic Liquids: A "Nano" Journey, Accounts, 2011, 44,1223-1231. Room Temperature Ionic Liquids, Chem. Rev., 2011, 111, 3508-3576. (694 refs)

Subcritical Water as Reaction Environment, ChemSusChem, 2011, 4, 566-579.

Green material synthesis with supercritical water, Green Chem. 2011, 13 1380-1390.

Switchable solvents, Chem. Sci., 2011, 2, 609-614

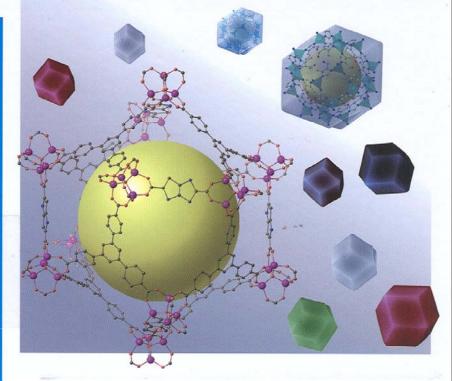
A Versatile Lab to Pilot Scale Continuous Reaction System for Supercritical Fluid Processing, *Org. Process Res. Dev.* **2011**, *15*, 1270-1280.

Searching for green solvents, Green Chem. 2011, 13 1391-1398

and many more

Supercritical fluids and critical points 唯有永續化學 2011 Supercritical fluids and critical points 能使化學永續

Temperature


	$T_{ m c}$	P_{c}
Material	(°C)	(bar)
Ammonia	132.4	113.2
Carbon dioxide	31.1	73.8
Ethane	32.2	48.7
Ethene	9.2	50.4
Fluoroform	25.9	48.2
Propane	96.7	42.5
Water	374.2	220.5

Edited by David Farrusseng

WILEY-VCH

Metal-Organic Frameworks

Applications from Catalysis to Gas Storage

Hydrothermal processes using supercritical, or sub-(near-)critical water.

Near-critical water, a cleaner solvent for the synthesis of metal-organic Frameworks, *Green Chem.* **2011**, DOI:10.1039/c1gc15726d

The microporous metal—organic framework $\{[Zn_2(L)]\cdot(H_2O)3\}$ • $(H_4L=1,2,4,5$ -tetrakis(4-carboxyphenyl)benzene) has been synthesized using near-critical water (300 °C, ca 80 bar) as a cleaner alternative to toxic organic solvents.

PGCC Academic Award 2011

Professor Bruce H. Lipshutz, Department of Chemistry and Biochemistry, University of California, Santa Barbara

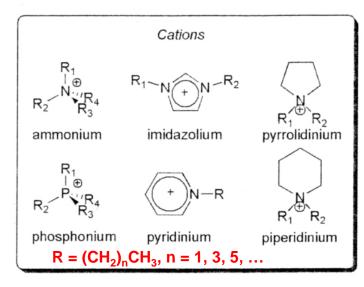
Innovation and Benefits

Most chemical manufacturing processes rely on organic solvents, which tend to be volatile, toxic, and flammable. Chemical manufacturers use billions of pounds of organic solvents each year, much of which becomes waste. Water itself cannot replace organic solvents as the medium for chemical reactions because many chemicals do not dissolve and do not react in water. Professor Lipshutz has designed a safe surfactant, **TPGS-750-M**, that forms tiny droplets in water. Organic chemicals dissolve in these droplets and react efficiently, allowing water to replace organic solvents.

$$(n = ca. 16)$$

enables reactions in water @ RT

Heck, Suzuki-Miyaura, aminations, borylations, silylations, Negishi-like, olefin metathesis reactions


 α -tocopherol +

TPGS-750-M

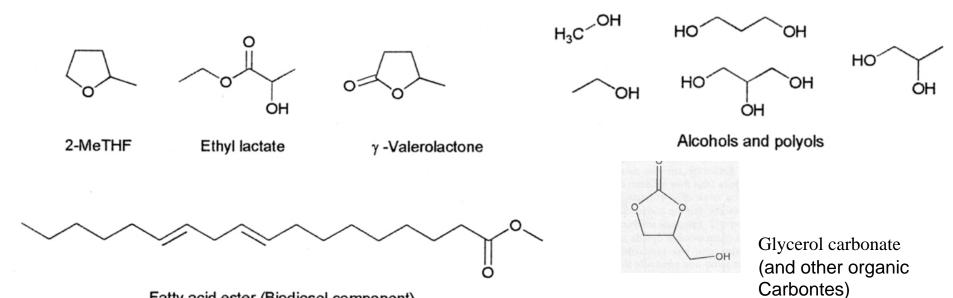
 $(CH_2CO)_2O$, then PEG-750-M

Room temperature ionic liquids

Anions

$$NO_3^ BF_4^ CF_3SO_3^ Cf_1$$
 Br_1^- , $I^ AI_2CI_7^ SbF_6^ CF_3CO_2^ CH_3CO_2^ Me_2PO_4^ PF_6^ (CF_3SO_2)_2N^ (CN)_2N^-$

Alternative Solvents for Green Chemistry (Kerton, 2009, RSC)
Chapter 5


Task-specific ionic liquids (TSIL)

Functionalized ionic liquid cations

Novel chiral ionic liquids

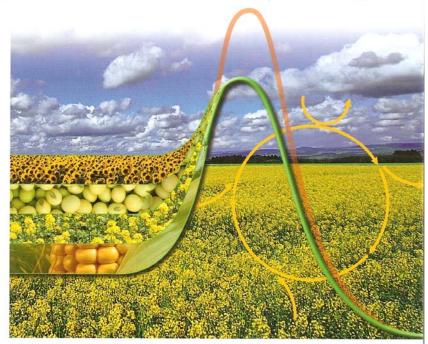
Solvents from renewable resources

Fatty acid ester (Biodiesel component)

Industrial uses of esteric green solvents

Solvent	Industrial use		
Glycerol carbonate	Non-reactive diluent in epoxy or polyurethane systems		
Ethyl lactate	Degreaser		
	Photo-resist carrier solvent		
	Clean-up solvent in microelectronics and semiconductor manufacture		
2-Ethylhexyl lactate	Degreaser		
	Agrochemical formulations		
Fatty acid esters	Biodegradable carrier oil for green inks		
(and related compounds) Coalescent for decorative paint systems Agrochemical/pesticide formulations		4	

Solvents for polymerization


Edited by Robert T. Mathers and Michael A.R. Meier

WILEY-VCH

Green Polymerization Methods

Renewable Starting Materials, Catalysis and Waste Reduction

Chapter 5 Monoterpenes as Polymerization Solvents and Monomers in Polymer Chemistry

Chapter 6 Controlled and Living Polymorization in Water

Chapter 7 Towards Sustainable Solution Polymerization: Biodiesel as a Polymerization Solvent

The use of PEG

- A green methodology for one-pot synthesis of polysubstituted-tetrahydropyrimidines using PEG
- Green Chem. Lett. Rev. 2011, 4, 109-115

- PEG 400 promoted nucleophilic substitution reaction of halides into organic azides under mild conditions
- Green Chem. Lett. Rev. 2011, 4, 281-287

Entry	NaN ₃ (eq.)	Catalyst/Solvent	Method/Temperature	Reaction time	Yield ^a	-
1 2	1.1 1.3	DMSO (31) H ₂ O (55)	Stirring, ambient temperature Microwave, 120°C	1 hr 30 min	98 ^b 95	-
3	1.3	$Clays/PE-H_2O$ (49)	Stirring, 90–100°C	6 hr	84	
4 5	2.0 1.1	[bmim][PF ₆]-H ₂ O (52) EtOH (34)	Stirring, 25°C Stirring, reflux	5 hr 24 hr	84 No report	43
6	1.2	PEG-400	Stirring, room temperature	50 min	98, 95, ^c 91 ^d	

A comprehensive tool that provides both simple and detailed guidance to help scientists choose greener solvents in route development.

GSK Solvent Selection Guide

	Few issues (bp°C)	Some issu	ues (bp°C)	Majorissues Dichloromethane **
Chlorinated		ated solvents, have you considered cetate, 2-Methyl THF or Dimethyl Carbonate?		Carbon tetrachlonde ** Chloroform ** 1.2-Dichloroethane**
Greenest Option	Water (100°C)			
Alcohols	1-Butanol (11810) 2-Butanol (10010)	Ethanol/IMS (18°C) t-Butanol (82°C) Methan	1-Propanol(97'0) 2-Propanol(82'0) ol (65'0)	2-Methoxyethanol **
Esters	t-Butyl acetate (85°C) Isopropyl acetate (89°C) Propyl acetate (102°C) Dimethyl Carbonate (81°C)	Ethyl ace Methyl ace		
Ketones		Methyl isobutyl ketone (117°c) Acetone (55°c)		Methyl ethyl ketone
Aromatics		p-Xylene (138°C) Toluene ** (111°C)		Benzene **
Hydrocarbons		Isooctane (99°C) Cyclohexane (81°C) Heptane (98°C)		Petroleum spirit ** 2-Methylpentane Hexane
Ethers		t-Butyl methyl ether (55°C) 2-Methyl THF (78°C) Cyclopentyl methyl ether (105°C)		1,4-Dioxane ** 1,2-Dimethoxyethane ** Tetrahydrofuran Diethyl ether Diisopropyl ether **
Dipolar aprotics		Dimethyl sul	foxide (189°G)	Dimethyl formamide ** N-Methyl pyrrolidone ** N-Methyl formamide ** Dimethyl acetamide ** Acetonitrile

^{** =} EHS Regulatory Alerts: please consult the detailed solvent guide and the GSK Chemicals Legislation Guide for more information http://echyantenide.cek.com/

多謝聽講 歡迎討論

劉廣定 臺大化學系 (ktliu@ntu.edu.tw)