聲明

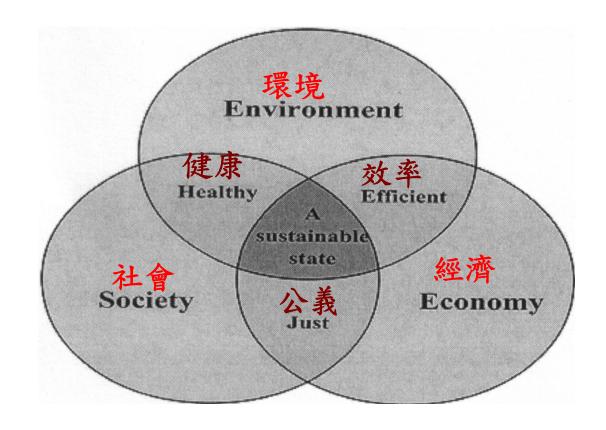
本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 「如本頁取材自〇〇〇教授演講內容」。

永續化學溶劑的一些新發展

劉廣定

(ktliu@ntu.edu.tw)

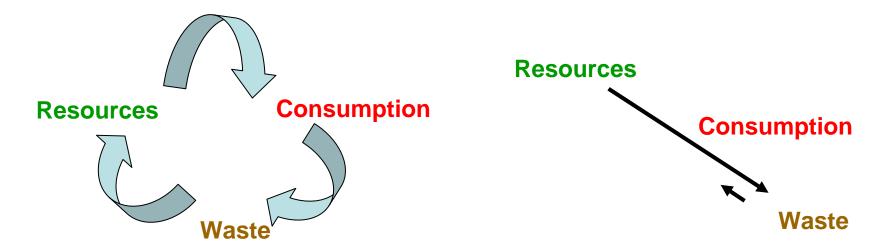
November 1, 2012


永續發展觀念之形成

- 近年來,永續發展(sustainable development)是國際上逐漸形成之重要思潮與具體行動。據1987年聯合國世界環境與發展委員會(WCED)報告書之定義:能滿足當代所需但不損再及後代滿足其所需之發展稱為永續發展。
- 1992年六月,聯合國在巴西召開首屆「環境與發展」會議,議定「廿一世紀待辦事項」(Agenda 21)40章。界定了「永續發展」為人類兼顧經濟成長、生態環境與社會責任三基柱的發展,以及其發展原則。
- 1993年聯合國成立永續發展委員會,宣導加強認識自然,保護環境之觀念外,並採積極的態度,以創新之發明與設計來促成世界進步,俾使環境、經濟和社會資源得以同時持續發展。

永續發展 Sustainable development

2005年聯合國高峰會再次強調經濟永續、社會永續和環境保護三者之間相互依賴與支援的重要。藉由保護與發展相輔相成,世界將可永續。



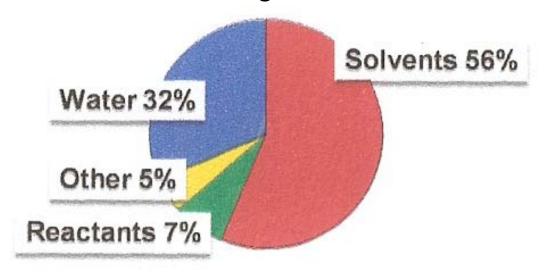
資源與環境的觀點

Nature a cycle

Industrial Societythe natural cycle disrupted

We are using resources and creating waste much faster that the earth can take our wastes and convert them back into resources.

我們消耗地球資源製造廢棄物已比地球將廢棄物轉成資源快得多一地球資源將愈來愈不足,環境品質將愈來愈差


化學化工的基礎觀點:環境因數

E-factor = kg(副產物+廢棄物)/kg(主產物)

工業製程	每年產量(噸)	E因數
原油煉製	1 0 ⁶ ~ 1 0 ⁸	小於0.1
工業化學品	1 0 ⁴ ~ 1 0 ⁶	小於1~5
精緻化學品	10 ² ~10 ⁴	5 到大於50
醫藥化學品	101~103	25到大於100

Environmental impact of manufacturing processes of active pharmaceutical Ingredients

A 2007 study showed the median amount of **materials** used to make 1 kg of API was 46 kg, in which 56% of the mass used was solvent. That is, 22 kg of solvents are needed to make 1 kg of API. E = 45

(Org Process Res Dev. 2007, 9,1173-1283)

永續化學

Green/sustainable chemistry is the invention, design and application of chemical products and processes to reduce or to eliminate the use and generation of hazardous substances. (OECD Workshop on Sustainable Chemistry, 1998)

2020 Sustianability Goals

Zero waste: eliminate the concept of waste in product, process, material and energy.

Zero toxic substances: eliminate substances known or suspected to be harmful to human health or the health of biological systems.

100% Closed loop processes: take 100% responsibility for our products at all stages of our product and process lifecycle.

Sustainable growth and profitability: create an economy the planet is capable of sustaining indefinitely.

永續的化學與化工

- ·「節能、減碳」與「環境保護」是不夠的至少須做到「節能、減廢」
- 反應方法、實驗原則、試劑、溶劑、觸媒等都能盡量配合永續化學與永續工程的原則
- 準則是以「減」求「增」一增產、增效、增利…

Reduce: Cost
 Non-renewables

Energy Risk

Environmental impact Space

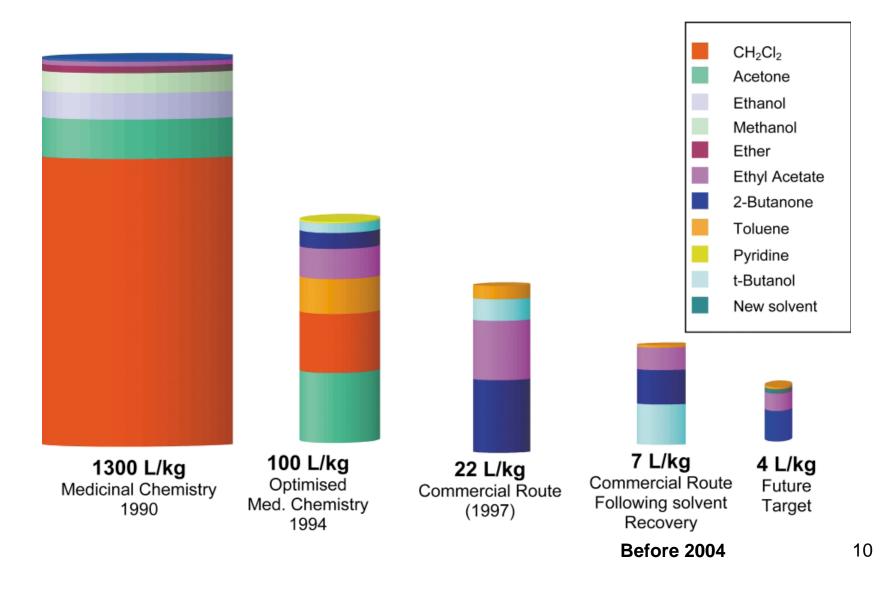
Hazards Time

Materials Waste

• • • • •

• 改進或創新製程以達目的(Process optimization for energy saving and waste reduction)

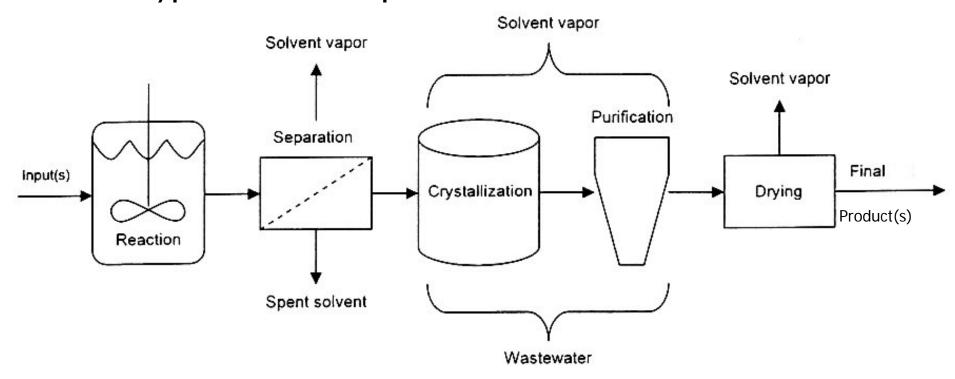
Sildenafil citrate process 2003 CRTSTAL Faraday Award


P. J. Dunn, et al. Green Chem., 2004, 6, 43-48; Org. Proc. Res. Dev., 2005, 9, 88-97

The development of the sildenafil citrate process is outlined. The E-factor for the final process is 6 Kg waste per kilogram of product.

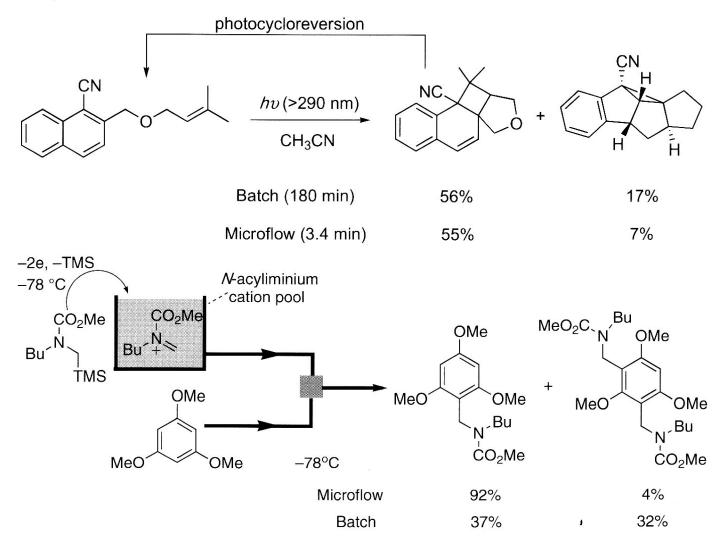
75 % Overall yield from 1 to sildenafil citrate (1997 process)

Solvents used in the sildenafil citrate process

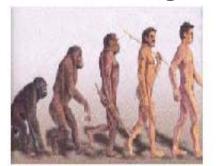

A variety of approaches

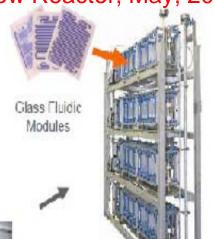
- Methods of chemical activation: thermo-, photo-, electro-, high pressure, ultrasound, microwave, mechano-chemistry
- More effective methodologies: multicomponent reactions, new catalysts, continuous flow and micro-reactors, modifying procedure
- Alternative solvents: replacement of petroleumbased, and volatile organic compounds (VOCs), switchable systems, solvent-less procedure
- Methods of recovery
- New synthetic pathways, etc.

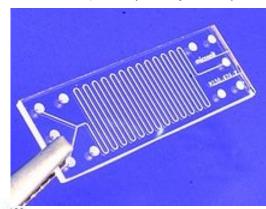
CI-free synthesis: *Pure Appl. Chem.* **2012**, *84*, 411-860


多數化學反應在溶劑中進行 A typical batch operation

連續流動製程必需溶劑溶劑回收方法之改進




Continuous flow and microreactors



Corning Advanced-Flow Reactor, May, 2009

Channel with 150 x 150 μ m (Wikipedia)

Corning® Advanced-Flow Glass Reactor

Today's Industrial Manufacturing

Some reviews: Alchemy

Georgia Tech to Use Corning Advanced-Flow Reactor in Synthesis Research since April, 2010 Ceramic reactor, announced June, 2011

Cross-coupling in flow (*Chem. Soc. Rev.*, **2011**, *40*, 5010–5029)

Synthesis using Flow Microreactors (ChemSusChem 2011, 4, 331-340)

A Versatile Lab to Pilot Scale Continuous Reaction System for Supercritical

Fluid Processing (Org. Process Res Dev. **2011**, *15*, 1275-1280)

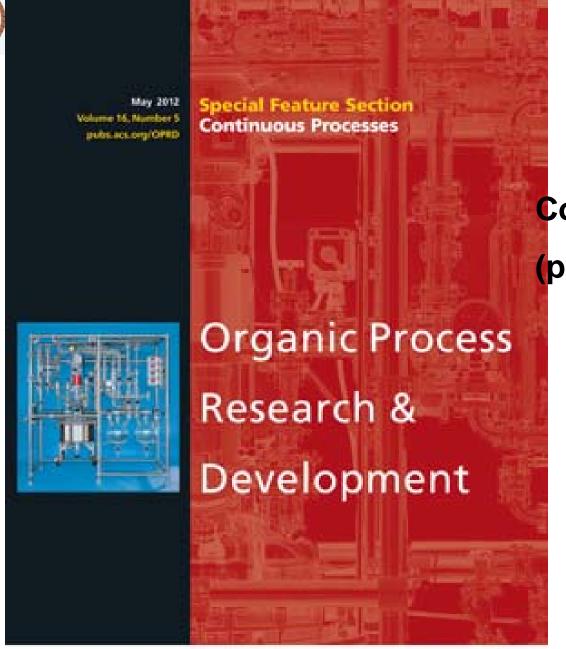
Continuous flow reactors: a perspective (*Green Chem.* **2012**, *14*, 38-54)

Continuous reactions in supercritical CO₂ (Chem. Soc. Rev. 2012, 41, 1428-1436)

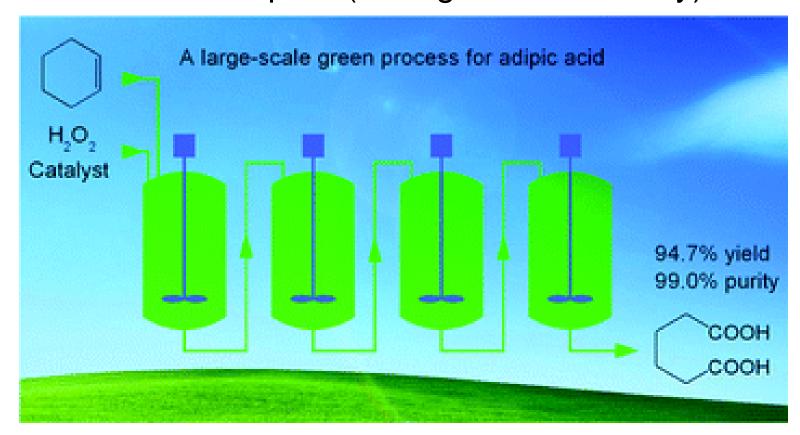
Microwave-assisted continuous flow synthesis on industrial scale(Green

14

Process. Svn. 2012. 1, 281-290)



Special issue: Flow Chemistry (pp. 213-350)


Special issue:

Continuous processes

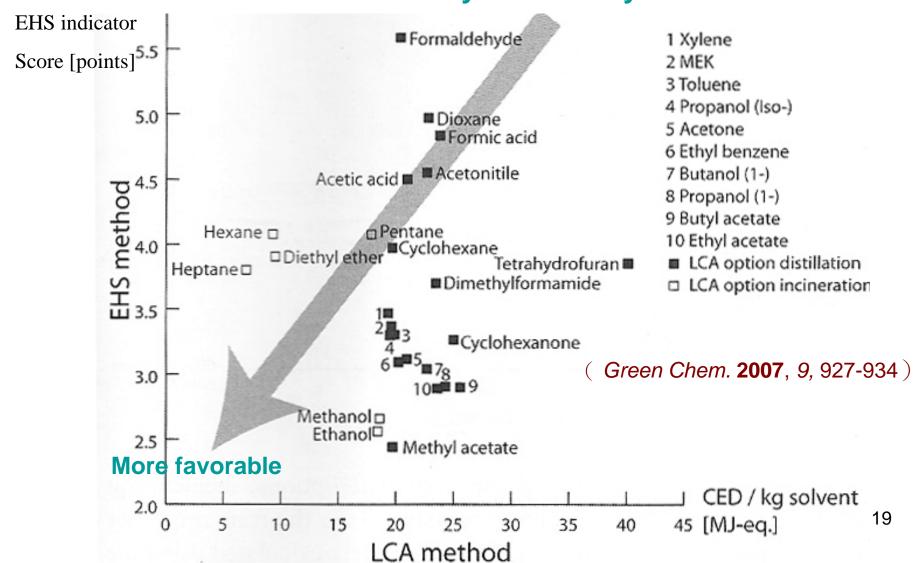
(pp. 811-818; 844-1153)

A large-scale continuous-flow process with four 5000 L stirred tank reactors (CSTR) for production of adipic acid *via* catalytic oxidation of cyclohexene has been developed. (Zhengchou University)

Safety of solvents---NFPA 704

- NFPA 704 is a standard maintained by the <u>U.S.</u>-based <u>National Fire Protection Association</u>. It defines the colloquial "fire diamond" used by emergency personnel to quickly and easily identify the risks posed by nearby hazardous materials. This is necessary to help determine what, if any, specialty equipment should be used, procedures followed, or precautions taken during the first moments of an emergency response.
- For example, cyclohexane

What does it mean?


Blue: health; Red: flammability; Yellow: reactivity; White: special

Numbers: 4, 3, 2, 1, 0

A comprehensive framework for the environmental assessment of 26 solvents

Environmental-health-safety and Life cycle assessment

Rowan solvent greenness index

(Slater and Savelski)

- Inhalation Toxicity Threshold Limit Value (TLV)
- Ingestion Toxicity
- Biodegradation
- Aquatic Toxicity
- Carcinogenicity
- Half-Life
- Ozone Depletion
- Global Warming Potential
- Smog Formation
- Acidification
- Soil Adsorption Coefficient
- Bioconcentration Factor

Pfizer solvent selection guide

Preferred	<u>Usable</u>	<u>Undesirable</u>
Water Acetone	Cyclohexane Toluene	Pentane Hexane(s)
Ethanol	Methylcyclohexane	Di-isopropyl ether
2-Propanol 1-Propanol	TBME Isooctane	Diethyl ether Dichloromethane
Ethyl Acetate	Acetonitrile 2-MeTHF	Dichloroethane Chloroform
Isopropyl acetate Methanol	THF Xylenes	NMP DMF
MEK 1-Butanol	DMSO Acetic Acid	Pyridine
t-Butanol	Ethylene Glycol	DMAc Dioxane
F0	Heptane	Dimethoxyethane Benzene
		Carbon Tetrachloride

Pfizer's solvent replacement table

Undesirable solvents	Alternative
Pentane	Heptane
Hexane(s)	Heptane
Di-isopropyl ether or diethyl	2-MeTHF or <i>tert</i> -butyl
ether	methyl ether
Dioxane or dimethoxyethane	2-MeTHF or <i>tert</i> -butyl
	methyl ether
Chloroform, dichloroethane,	Dichloromethane
carbon tetrachloride	
Dimethyl formamide, dimethyl	Acetonitrile
acetamide, N-methylpyrrolidinone	
Pyridine	Et ₃ N (if pyridine used as base)
Dichloromethane (extractions)	EtOAc, tert-butyl methyl ether,
	toluene, 2-MeTHF
Dichloromethane (chromatography)	EtOAc/heptane
Benzene	Toluene

Table 1. Comparison of solvent use in GlaxoSmithKline Pharmaceuticals (GSK) prior to 2000 and in pilot plant processes carried out in 2005

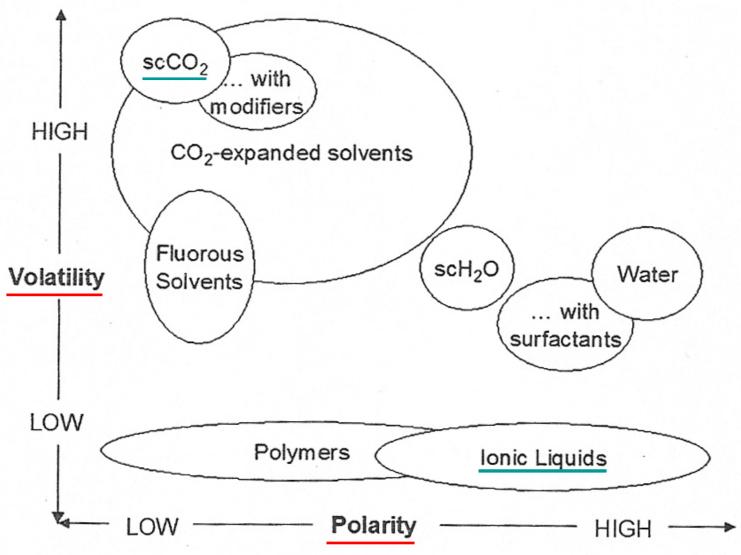
	2005 rank	1990-2000 rank
2-propanol	1	5
ethyl acetate	2	4
methanol	3	6
denatured Ethanol	4	8
<i>n</i> -heptane	5	12
tetrahydrofuran	6	2
toluene	7	1
dichloromethane	8	3
acetic acid	9	11
acetonitrile	10	14
Average solvents used	75 kg/kg API	94 kg/ kg API

溶劑之回收與處理

- Chemical treatment technologies for **waste-water** recycling—an overview (*RCS Adv.* **2012**, *2*, 6380-6388)
- STEP wastewater treatment: A solar thermal electrochemical process for pollutant oxidation (*ChemSusChem* **2012**, *5*, 2000-2010)
- The importance of **acetonitrile** in the pharmaceutical industry and opportunities for its recovery from waste (*Org. Process Res. Dev.* **2012**, *16*, 612-624)
- Green design alternatives for **isopropanol** recovery in the celecoxib process (*Clean Techn. Environ. Policy* **2012**, *14*, 697-698)
- Pervaporation as a green drying process for **tetrhydrofuran** recovery in pharmaceutical synthesis (*Green Chem. Lett. Rev.* **2012**, *5*, 55-64)

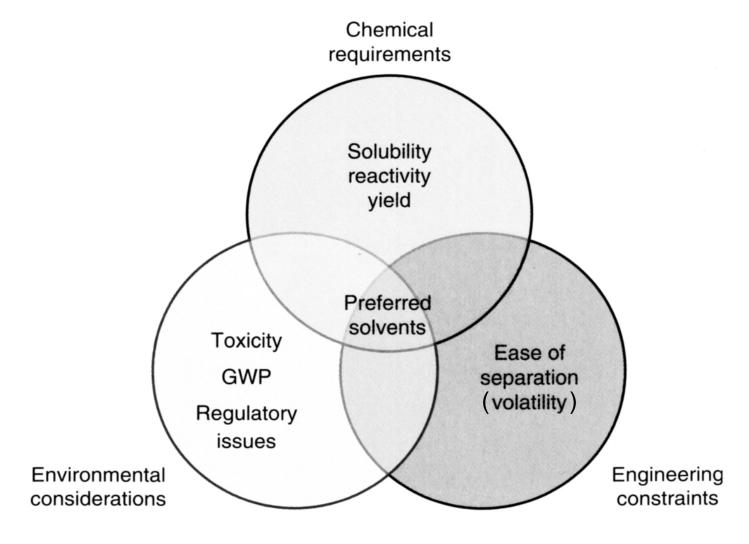
Replacement of dichloromethane

- A convenient guide to help select replacement solvents for dichloromethane in chromatography
 - Green Chem. 2012, DOI: 10.1039/C2GC36064K
- Replacement of dichloromethane within chromatographic purification: a guide to alternative solvents
 Green Chem. 2012, DOI: 10.1039/C2GC36378J
- 2-Methyltetrahydrofuran (2-MeTHF) is a good substitute for CH₂Cl₂
 - A general review on 2-MeTHF, ChemSusChem, 2012, 5, 1369-1379

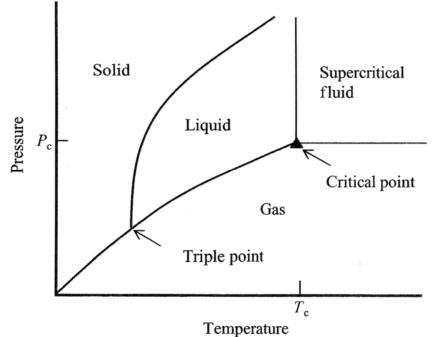

Alternative solvents (Neoteric solvents)

- Water
- Supercritical and near-(or sub-)critical fluid systems
- Other benign solvents (ionic liquids, gas-expansion liquids, etc.)
- Polymeric solvents and less-volatile solvents
- Renewables (bio-derived, e.g., glycerol derivatives)
- [Fluorous solvents]
- Switchable systems

Alternative solvents

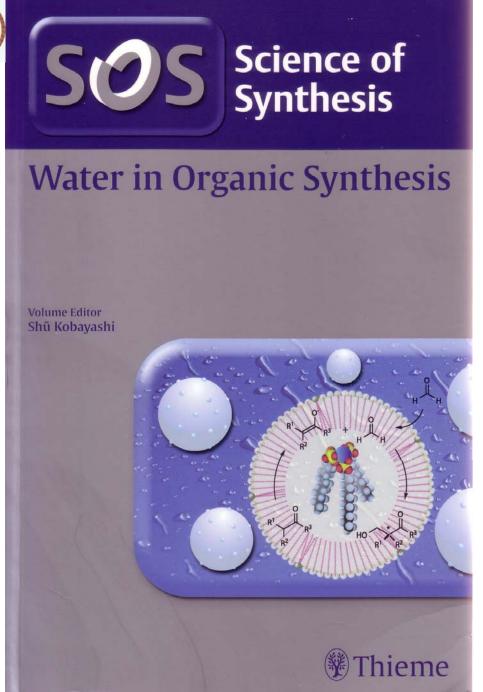

Polarity and volatility characteristics

(Kerton, Alternative Solvents for Green Chemistry, RSC, 2009, p. 17)



Conceptual basis for preferable solvent selection

Supercritical fluids and critical points


	$T_{ m c}$	$P_{\rm c}$	
Material	(°C)	(bar)	
Ammonia	132.4	113.2	
Carbon dioxide	31.1	73.8	
Ethane	32.2	48.7	
Ethene	9.2	50.4	
Fluoroform	25.9	48.2	
Propane	96.7	42.5	
Water	374.2	220.5	

Water

- Subcritical Water as Reaction Environment *ChemSusChem*, **2011**, *4*, 566-579.
- Green material synthesis with supercritical water *Green Chem.* **2011**, *13* 1380-1390.
- Near-critical water for synthesis of metal-organic framework *Chem. Soc. Rev.* **2012**, *41*, 117-122.
- Green chemistry oriented org. synthesis in water Chem. Soc. Rev. 2012, 41, 1515-1527
- Aqueous <u>biphasic system</u>: a boost brought about by using ionic liquids
 - Chem. Soc. Rev. 2012, 41, 4966-4995

Ed. S. Kobayashi, 2012

- 1. Introduction
- 2. Structure and Properties
- 3. Reactions of C-C multiple bonds
- 4. Reactions of C=O and C=N
- 5. Cyclization, Rearrangement, etc.
- 6. Special techniques in water
- 7. Industrial applications
- 8. Perspective

(>1000 pages)

Surfactant for aqueous-organic reactions

PGCC Academic Award 2011

Professor Bruce H. Lipshutz, Department of Chemistry and Biochemistry, University of California, Santa Barbara

Innovation and Benefits

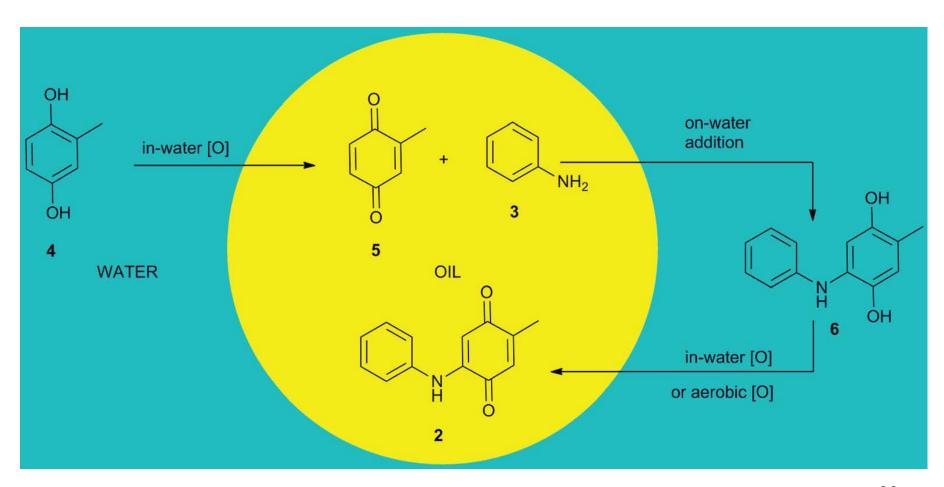
Most chemical manufacturing processes rely on organic solvents, which tend to be volatile, toxic, and flammable. Chemical manufacturers use billions of pounds of organic solvents each year, much of which becomes waste. Water itself cannot replace organic solvents as the medium for chemical reactions because many chemicals do not dissolve and do not react in water. Professor Lipshutz has designed a safe surfactant, **TPGS-750-M**, that forms tiny droplets in water. Organic chemicals dissolve in these droplets and react efficiently, allowing water to replace organic solvents.

$$(n = ca. 16)$$

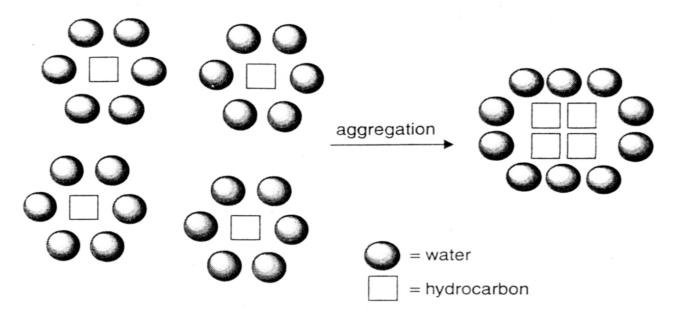
 α -tocopherol +

TPGS-750-M

 $(CH_2CO)_2O$, then PEG-750-M


enables reactions in water @ RT

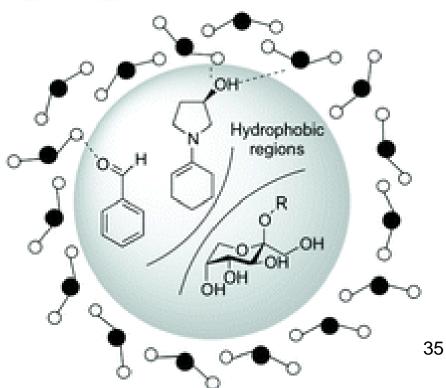
Heck, Suzuki-Miyaura, aminations, borylations, silylations, Negishi-like, olefin metathesis reactions


In-water, on-water domino process

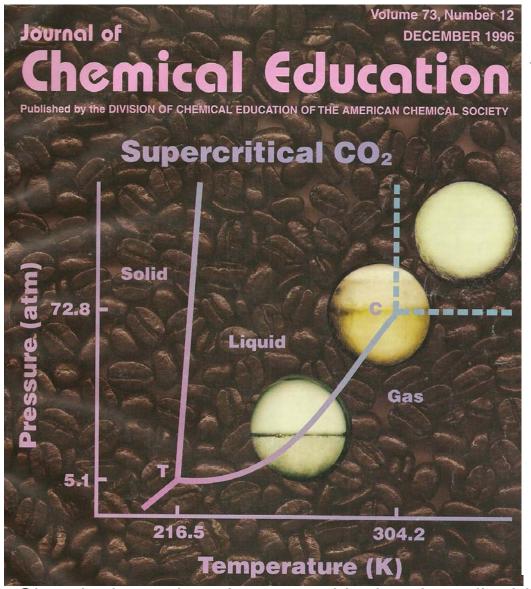
(Chem. Eur. J. 2010, 16, 8972-8974; Green Chem. 2012, 14, 605-609)

Hydrophobic Effects

Figure 5.5 The hydrophobic effect. Aggregation of hydrocarbon molecules in water reduces the number of molecules with restricted motion


Scheme 5.1 Indium mediated imine coupling

Organocatalyzed direct aldol reactions were efficiently performed in aqueous solutions of facial amphiphilic carbohydrates with high diastereoselectivity and yields.


(**Green Chem.**, 2012, **14**, 281-284)

Catalysts, e.g.

ScCO₂"老"技術

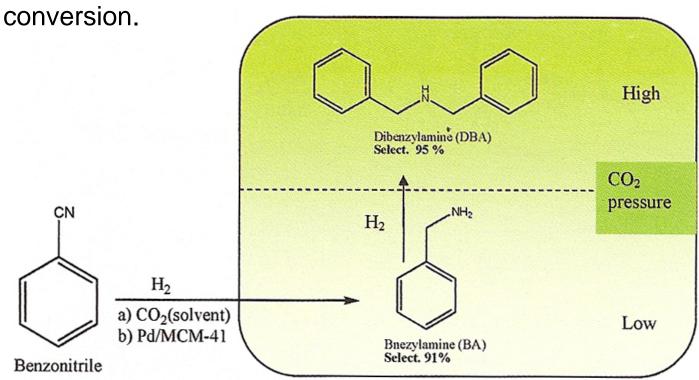
化工技術

1998年10月號/第67期

超臨界流體技術 專輯	談駿嵩主編
超臨界流體技術專輯前言 談駿嵩	118
超臨界流體系統平衡溶解度之量測及關聯	
林河木・李明哲	120
超臨界流體層析儀之介紹	
桂椿雄・沈桓儀	140
超臨界流體技術在食品工業中之應用	
孫璐西・廖怡禎	148
超臨界溶媒技術萃取天然物之應用	
張傑明・張慶源・巫錫銘	172
超臨界流體於塑膠發泡之應用	
梁明在・戴宏哲・吳昭燕	180
超臨界流體技術在新材料開發上之應用	
戴怡德	188
超臨界二氧化碳染色技術	
林文發	198
超臨界濕式氧化技術	
王鴻博・林錕松・黄鈺軫	206

New Surfactant for Sc-CO₂

(a)
$$\begin{array}{c} & & \\$$


Non-fluorinated (ether-carbonate) copolymer by Beckman and coworkers at U. of Pittsburgh. **PGCC Award of 2002** (*J. Phys. Chem. B*, **2009**, *113*, 14971-14980)

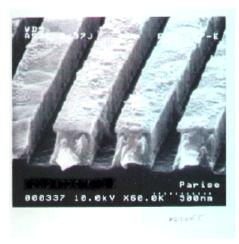
Hydrogenation of nitrile in scCO₂: a tunable approach to amine selectivity

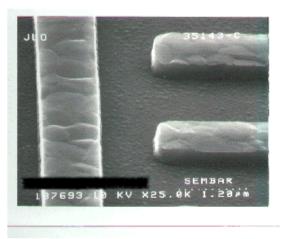
Green Chem. 2010, 12, 87-93

By tuning the CO₂ pressure changes the product selectivity (more than 90%) from benzylamine to dibenzylamine, with 90+%

Industrial applications

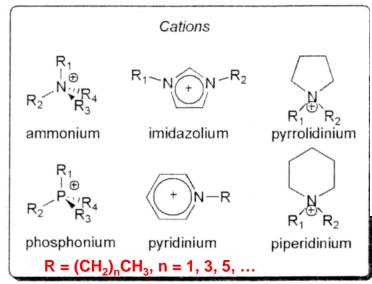
● Extraction of fatty and resin acids from dried pine dust with scCO₂ to reduce auto-oxidation (*RCS Adv.* 2012, 2, 1806-1809)





RIE Residue Removal

After metal etch



After SCCO2 cleaning

Room temperature ionic liquids

Anions

$$NO_3^ BF_4^ CF_3SO_3^ Cf$$
, Br^- , $I^ AI_2CI_7^ SbF_6^ CF_3CO_2^ CH_3CO_2^ Me_2PO_4^ PF_6^ (CF_3SO_2)_2N^ (CN)_2N^-$

(RTIL)

Alternative Solvents for Green Chemistry (Kerton, 2009, RSC)Chapter 5

Task-specific ionic liquids (TSIL)

Functionalized ionic liquid cations

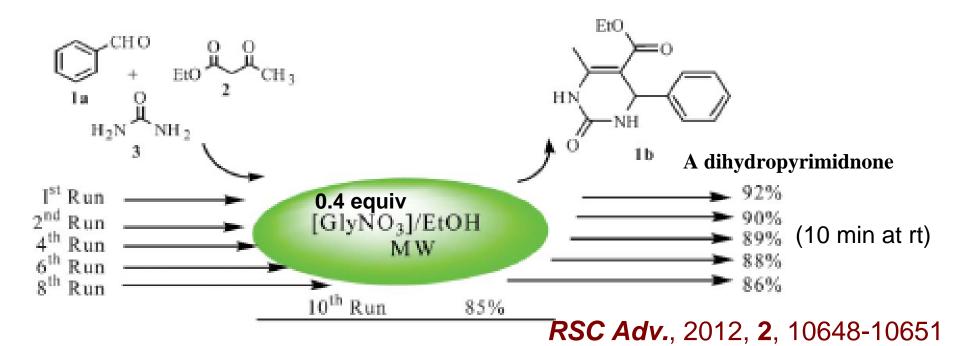
Novel chiral ionic liquids

CH=CH₂ CN NH_2 OH, OR SHPPh₂ $Si(OR)_3$ Urea Thiourea Metal Catalysts

X = CI, Br, or Tf_2N

Ether- and alcohol-functionalized task-specific ionic liquids

New ether- and alcohol-functionalized ionic liquids have gained tremendous attention in various applications due to their attractive physicochemical properties.

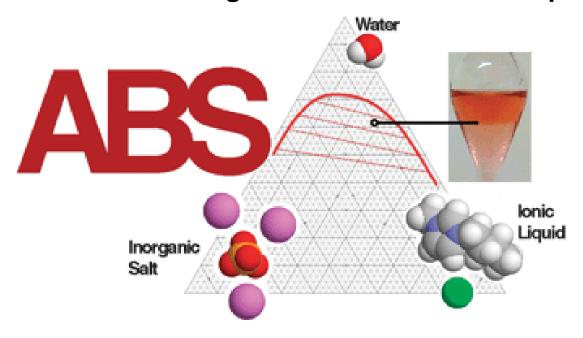

$$R_1$$
 N $+$ R_2CI R_1 N $+$ R_2

R₂Cl could be one of these chlorides (sometimes bromides):

Glycine nitrate, an inexpensive, recyclable and biodegradable ionic liquid

Microwave assisted 3-component Biginelli reaction

Biodegradation studies of ionic liquids


Neumann, et al. Green Chem, 2012, 14, 410-418 Trivedi, et al. ChemSusChem 2011, 4, 604-608 Coleman and Gathergood, Chem. Soc. Rev., 2010, 39, 600 - 637 Harjani, et al. Green Chem., 2010, 12, 650 – 655

Aqueous Biphasic System

Chem. Soc. Rev. 2012, 41, 4966-4995

This *critical review* provides a judicious assessment of the literature and highlights future challenges to the field of ionic-liquid-based ABS.

Extraction of Puerarin using ABS

A novel technique using aluminium-based salts allows 96-100% recovery of ionic liquids containing imidazolium-, pyridinium- and phosphornium-based fluids from aqueous streams

RSC Adv. 2012, DOI: 10.1039/C2RA21535G

An alternative to ionic liquids

Natural compounds have recently been used to produced deep eutectic solvents (choline chloride + RCOOH, or ROH, or urea), sugar melts (carbohydrate + urea or DMU + NH₄Cl or MCl), or ionic liquids. This review presents physicochemical data of these reaction media and highlights recent advances in their use in organic synthesis and bio-transformations.

Catalyst free quinazoline multicomponent synthesis 70

Epoxide hydrolysis³³

Carolin Ruß and Burkhard König'

45

Green Chem. 2012, DOI: 10.1039/c2gc39005e

Deep eutectic solvent

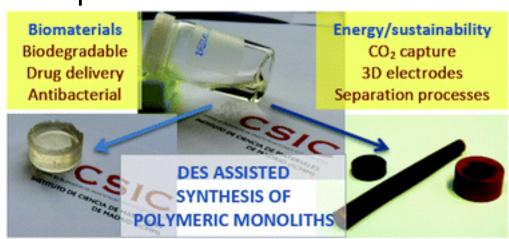
A type of ionic solvent with special properties of a mixture which forms a eutectic with a mp much lower than both individual components. e.g., mp for choline chloride is 302°C urea is 133°C, the (1:2) eutectic mixture is 12°C.

Chem Soc. Rev. **2012**, *41*, 4996-5014; 7108-7146

Halide Salts

$$H_2N$$
 H_2N
 H_2N
 H_3N
 H_3N

PhO
$$CS_2$$
, rt, 60 min N S OPh OPh


95% in PEG, 87% in DES, RSC Adv, 2012, 2, 7413-7416

Deep-eutectic Solvents

Synthetic processes based on the use of deep-eutectic solvents are useful to prepare a range of materials with tailored morphologies and compositions.

Chem. Soc. Rev. **2012**, *41*, 4996-5014

Deep Eutectic Solvents (DES) are an emerging new class of solvents that are highly attractive for the design of ecoefficient processes. Advantages include biocompatible, low price, poorly toxic, biodegradable, easy to prepare and purify.

Liquid polymers as solvents

poly(ethylene poly(propylene poly(tetrahydro- poly(dimethyl- poly(methyl- glycol) glycol) furan) siloxane) phenylsiloxane)

Table 1 Extent of biodegradation of polyethers by activated municipal sewage sludge after 14 days exposure²⁹

Polymer	M_n	Biodegradation (%)		
PEG	390	99.7		
PEG	1500	95.9		
$PEG-DME^a$	1500	9.4		
PPG	410	69.7		
PTHF	660	99.8		
4 nng				

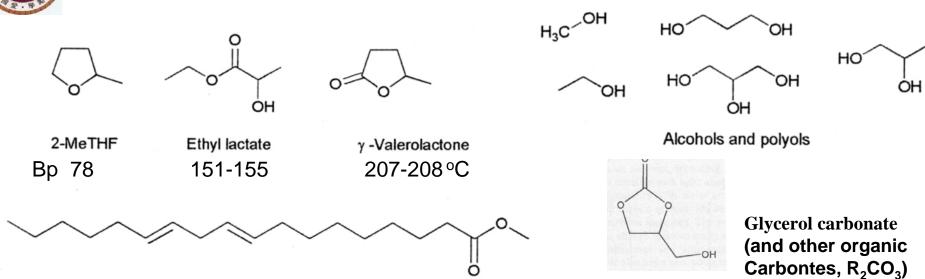
^a PEG-dimethylether, MeO(CH₂CH₂O)_nMe

Synthesis of 2,5-disubstituted 1,3,4-oxadiazoles catalyzed by CAN in PEG

(Green Chem. Lett. Rev. 2010, 3, 55-59)

PEG was found the better solvent (faster and higher yield) than acetonitrile, ethanol and toluene. With 5 mole% of catalyst the reaction was done in 5 hr. The mixture was cooled in dry ice-acetone bath to precipitate PEG, and extracted with ether (PEG being insoluble). Isolation yield was 97-98%. The PEG (2% loss) could be reused for at least three times.

Newer applications, such as selective oxidation of sulfide to sulfoxide by PEG/O₂ (*Green Chem.* **2012**, *14*. 130-135)



PEG functionalized IL

Poly(ethylene glycol)-functionalized imidazolium salts—palladium-catalyzed Suzuki reaction in water.

Solvents from renewable resources

Fatty acid ester (Biodiesel component)

Industrial uses of esteric green solvents

Solvent	Industrial use			
Glycerol carbonate	Non-reactive diluent in epoxy or polyurethane systems			
Ethyl lactate	Degreaser			
	Photo-resist carrier solvent			
	Clean-up solvent in microelectronics and semiconductor manufacture			
2-Ethylhexyl lactate	Degreaser			
	Agrochemical formulations			
Fatty acid esters	Biodegradable carrier oil for green inks			
(and related compounds)	Coalescent for decorative paint systems Agrochemical/pesticide formulations	5		

Some recent articles or reviews

 γ -Valerolactone Green Chem. 2008, 10, 238-242

2-MeTHF: ChemSusChem **2012**, *5*, 1369-1379

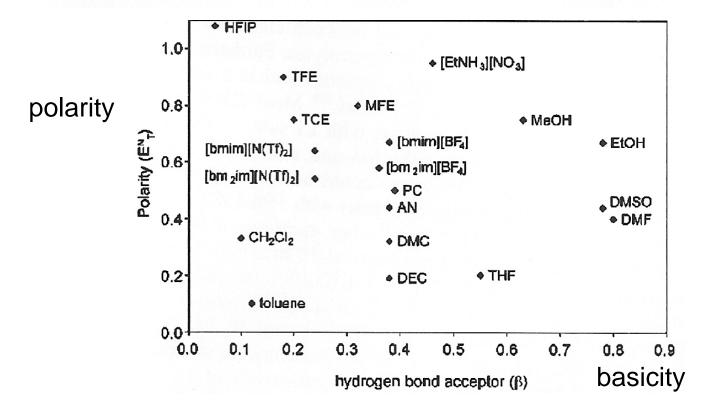
Ethyl lactate: Green Chem. 2011, 4, 2658-2671

Glycerol: *Green Chem.* **2010**, *12*, 1127-1138

Ethylene glycol: Chem. Soc. Rev. 2012, 41, 4218-4244

Organic carbonates: Chem. Rev. 2010, 110, 4554-4581

Manufacturing Glycerol carbonate: Org. Process.


Res. Dev. 2012, 16, 389-399

Organic carbonates as solvents

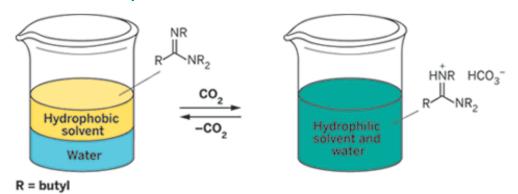
Table 1. Transport and Thermodynamic Properties

organic carbonate	bp [K]	d (293 K) [g/cm ³]	viscosity (298 K) [cP]	
 DMC	363 ^b	1.07^{b}	0.590^b Acetone	0.320 cP
DEC	399^{b}	0.98^{b}	$\frac{0.753^c}{2.56^{a,d}}$ Water	0.891 cP
EC	521^{d}	$1.34^{a,d}$	$2.56^{a,d}$ vvaler	0.091 66
PC	515^{d}	1.20^{d}	2.50^d 1-butanol	2.99 cP
BC	524^{d}	1.14^{d}	3.14^{c}	

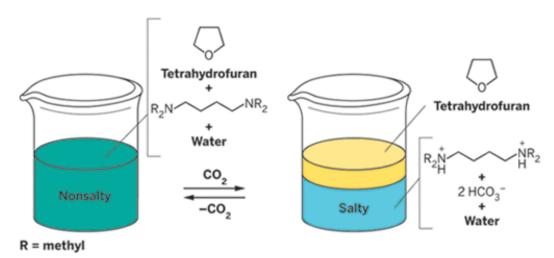
Inexpensive terpenes to useful chemicals

Limonene is a by-product of juice industry (50000 tpa in us). It can be used as non-toxic replacement in some medical applications.

It can be dehydrogenated to yield *p*-cymene, and then toTPA.


Recently, Limonene was found to be used directly as solvent for certain reactions such esterification and amidation.

(Green Chem. 2012, 14, 90-93)



Switchable Water: Aqueous Solutions of Switchable Ionic Strength

Mercer and Jessop, ChemSusChem 2010, 3, 467-470

Switchable hydrophilicity solvent

Switchable water

Tertiary amine and polyamines having switchable hydrophilicity

Jessop, et al. Green Chem. 2011, 13, 619-623; 2012, 14, 832-839

NEt ₃	Me ₂ NBu	Et ₂ NBu	Pr ₂ NMe	NEt	NMe	Me ₂ NC ₆ H ₁₃	NBu
1	2	3	4	5	6	7	8
1.2	1.6	1.7	1.9	1.7	2.1	2.5	2.4

SWITCHABLE WATER

- · low ionic strength
- low osmotic pressure
- good solvent for polar organics
- · high ionic strength
- high osmotic pressure
- poor solvent for polar organics

57

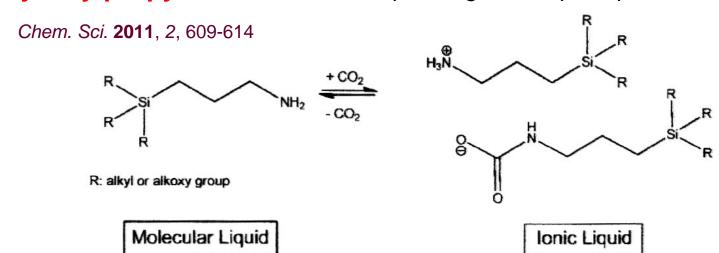
Amidines and guanidines

Reversible switch from a molecular liquid mixture of **DBU** or **TMBG** and ROH to the ionic liquid [DBUH]+[RCO₃] and [TMBGH]+[RCO₃] upon addition of CO₂, respectively.

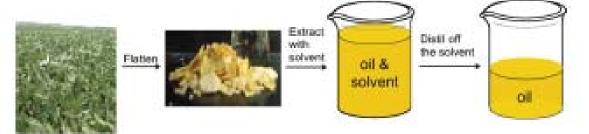
Log K = 1.7
$$Log K = 3~7$$

$$RCO_{3}^{\Theta}$$

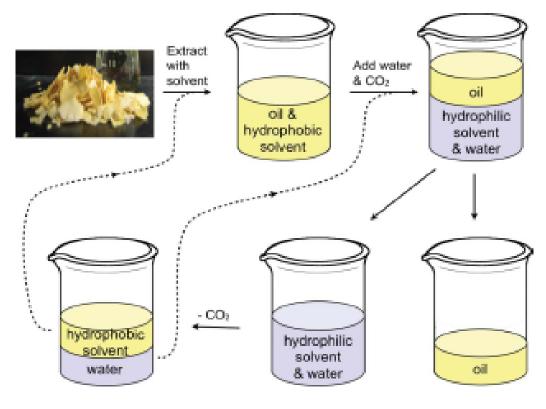
$$RCO_{3}^{\Theta}$$

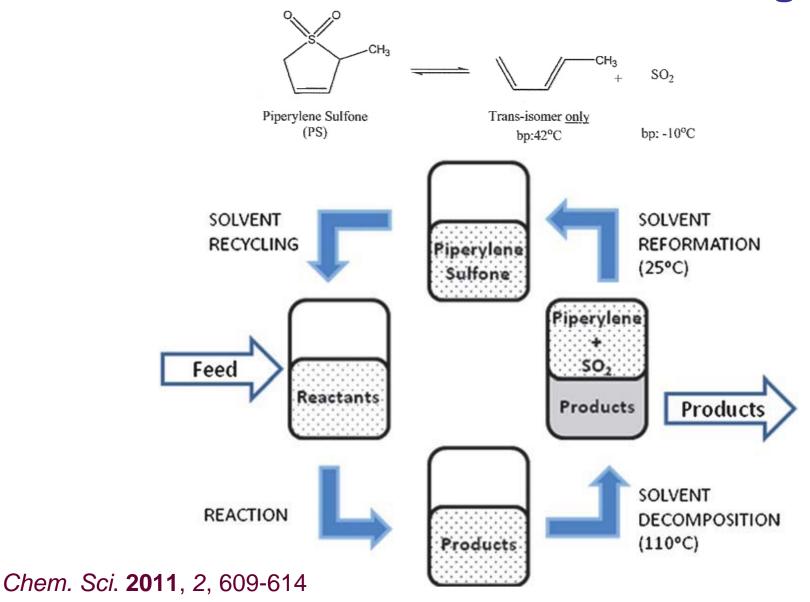

$$RCO_{3}^{\Theta}$$

$$RCO_{3}^{\Theta}$$


$$RCO_{3}^{\Theta}$$

$$R = C_{1} \text{ to } C_{12}^{\bullet}$$


One-component system: reversible switch from a molecular liquid **trialkoxy- and trialkyl-silylpropylamine** to its corresponding ionic liquid upon addition of CO₂.


Conventional method for obtaining soybean oil after distillation

The use of SHS method avoids distillation

Switchable solvent and recycling

Switchable Ionic Liquids

Scheme 3 Proposed mechanism for the formation of SIL2, DBU-glycerol-SO₂.

(RSC Advances 2011, 1, 452-457)

Scheme 2 Proposed mechanism for the formation of SIL1, DBU-glycerol-CO₂.

Challenges in searching for green solvents

- Polarity vs. basicity
- Environmentally Benign (including manufacture)
- Easy to move (recover)
- Eliminating distillation

(Jessop, Green Chem. 2011, 13, 1391-1398)

唯有永續化學化工能使化學化工永續 Sustainability of chemistry and engineering can only be achieved by sustainable chemistry and engineering

劉廣定 臺大化學系 (ktliu@ntu.edu.tw)