聲明

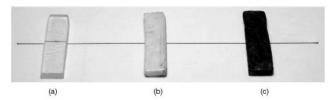
本檔案之內容僅供下載人自學或推廣化學教育 之非營利目的使用。並請於使用時註明出處。 「如本頁取材自〇〇〇教授演講內容」。

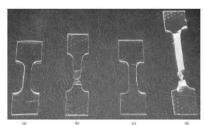
中國化學會2014年會/綠色化學講習會

Topic: Green solvent

綠色溶劑回顧與前瞻:分離純化及永續能源之應用

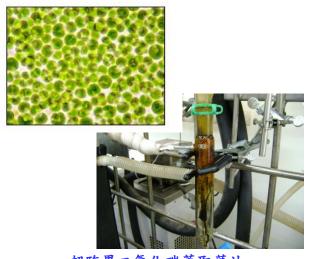
杜子邦 研究員工研院/材化所


103年11月22日

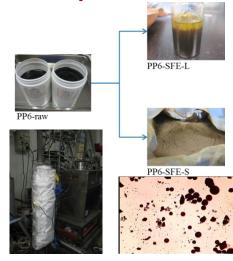

Perspective

Supercritical Carbon dioxide, scCO₂

Blending and plasticizer



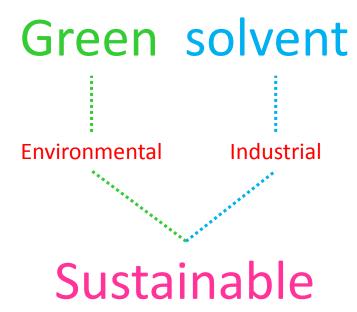
•超臨界二氧化碳掺和導電高分子PPy


•超臨界二氧化碳在高分子基材之吸附及塑化

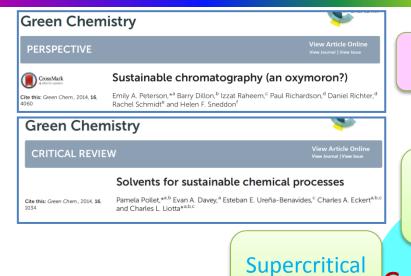
Extraction

•超臨界二氧化碳萃取藻油

Separation


•超臨界二氧化碳瀝青純化分離

- 1.*Sustainable Chromatography (an oxymoron?) Green Chemistry, July 14, 2014 (web)
- 2.*Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes ChemSusChem, 2014
- 3.*Design and Evaluation of Switchable-Hydrophilicity Solvents Green Chem., 2014, 16, 1187-1197
- 4.*Glycerol Based Solvents: Synthesis, Properties and Applications Green Chem., 2014, 16, 1007-1033
- 5.*Bio-based Solvents: an Emerging Generation of Fluids for the Design of Eco-efficient Processes in Catalysis and Organic Chemistry Chem. Soc. Rev., 2013, 42, 9550-9570
- 6. *Are Ionic Liquids a Proper Solution to Current Environmental Challenges? Green Chem., 2014, Advance Article
- 7.*Solvents for Sustainable Chemical Processes Green Chem., 2014, 16, 1034-1055

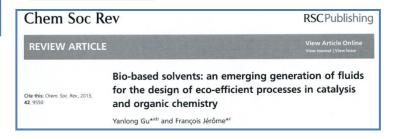

Description

Scope

Waste control

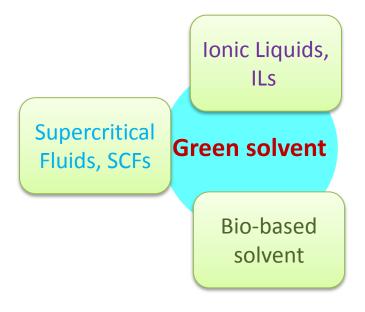
Ionic Liquids,


Green solvent

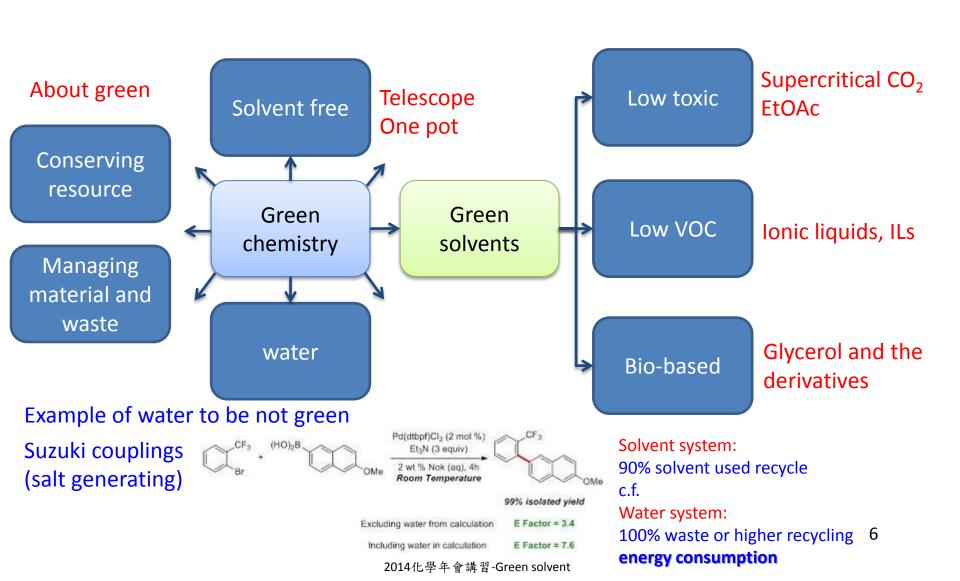

CRITICAL REVIEW

View Article Online
View Journal | View Journal |

Fluids, SCFs


Bio-based solvent

Content


Introduction of

- Fundamental
- Research Examples
- Industrial cases

Green solvents in this talk

Bio-based solvents

Chem Soc Rev

RSCPublishing

REVIEW ARTICLE

View Article Online

Cite this: Chem. Soc. Rev., 2013. 42, 9550

Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry

Yanlong Gu*ab and François Jérôme*c

Yanlong Gu

Green Chemistry

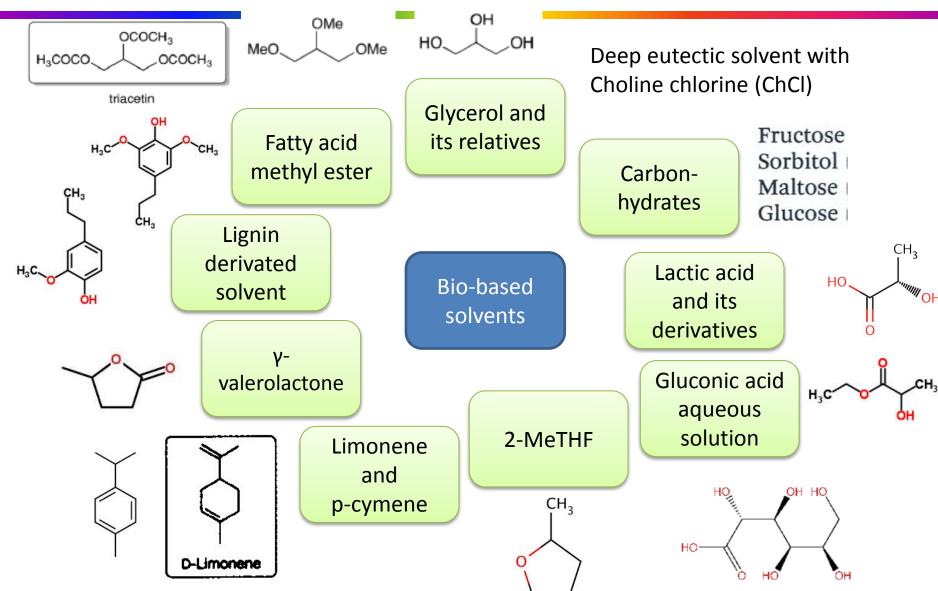
CRITICAL REVIEW

View Article Online

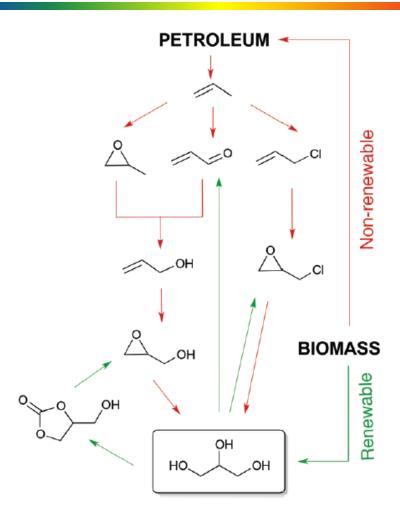
Glycerol based solvents: synthesis, properties and applications

Cite this: Green Chem., 2014, 16, 1007

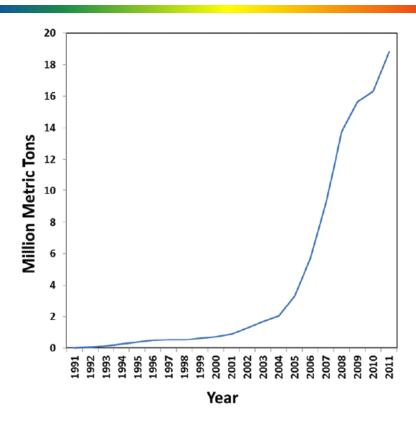
José I. García,* Héctor García-Marín and Elísabet Pires


José I. García

Héctor García-Marín

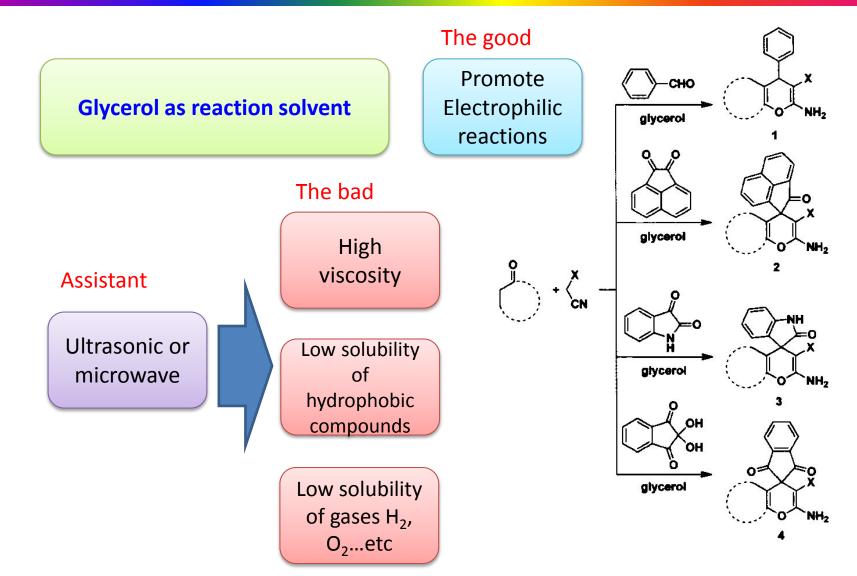

Bio-based solvents

2014化學年會講習-Gri


Green glycerol?

Scheme 1 From petroleum derived products to glycerol and back. Petrochemical vs. oleochemical sources of commodities.

Driving force of bio-based glycerol


Fig. 1 World biodiesel production, 1991–2011 (source: F. O. Licht; Worldwatch).

Glycerol as reaction solvent

ITRI Industrial Technology Research Institute

Glycerol derivatives

Acetins:

Scheme 27 Synthesis of triacetin in a two-step reaction.

Acetals:

95% conv. 70% sel.

Scheme 34 Synthesis of glycerol formal from glycerol condensation with formaldehyde.

Ketals:

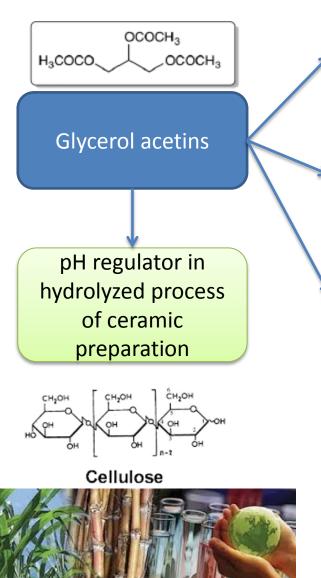
Scheme 35 Synthesis of solketal by glycerol condensation with acetone.

Ethers:

Scheme 37 GMMEs, GDMEs, and GTME production from glycerol.

Carbonates:

Special selectivity using glycerol derivatives as solvent


Table 1 Transglycosylation of Biolacta β -galactosidase in glycerol-derived solvents

醣基轉換反應,β-半乳糖苷酶

		<u> </u>		7 7
Entry	Medium	Gal	Synthesis $\beta(1 \rightarrow 4)$	Synthesis $\beta(1 \rightarrow 6)$
1	Buffer	-	84	17
2	Glycerol	35	14	9
3	TFE	9	73	_
. 4	ОН		9	91
5	OH OH	81	13	7
6	ОН	<u> </u>	29	71
7	MeO OH	_	15	85
8	O OH CF ₃	_	_	93
9	F ₃ C^O^O^CF ₃	_	_	100
10	OH OH	_	· · · · · ·	92

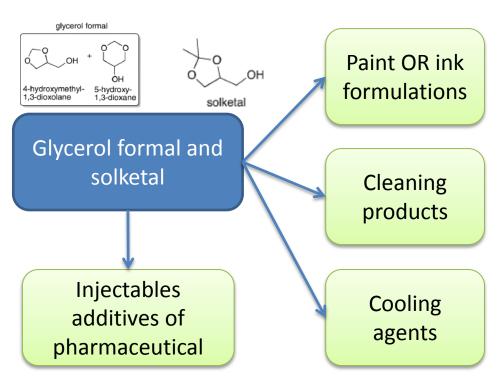
Glycerol acetins

Antibacterial Anti-mould

Caffeine extraction

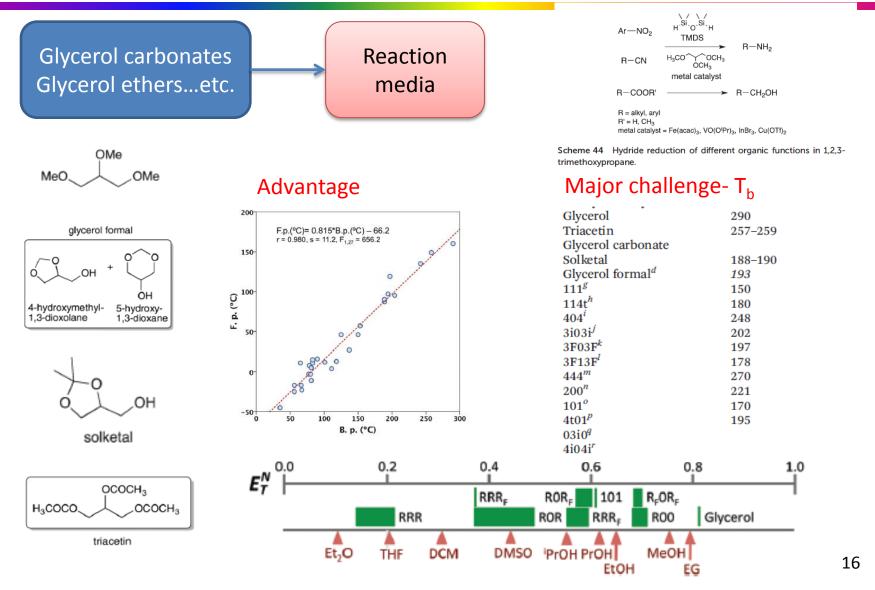
Cellulose plasticizers

Industrial applications



Glycerol formal and solketal

Industrial applications



2014化學年會講習-Green solvent

Industrial Technology As so vent of reaction

Carbohydrates

Carbohydrates

Assistant

Aqueous solution

Low melting point mixtures

The bad

Solid to high viscosity

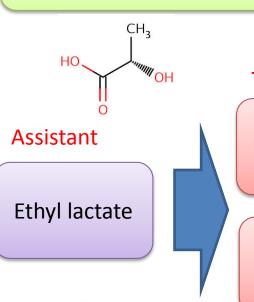
The good

Promote Electrophilic reactions

> Increase stereoselectivity

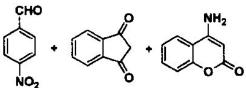
Table 2 Melts of carbohydrates, urea and inorganic salts^a

Melting point (°C)	Carbohydrate ^b (w/w)	Urea	Salt
65	Fructose (60%)	Urea (40%)	_
67	Sorbitol (70%)	Urea (30%)	NH ₄ Cl (10%)
73	Maltose (50%)	N,N-Dimethylurea (40%)	NH ₄ Cl (10%)
75	Glucose (50%)	Urea (40%)	CaCl ₂ (10%)
75	Mannose (30%)	N,N-Dimethylurea (70%)	_
77	Sorbitol (40%)	N,N-Dimethylurea (60%)	_
77		N,N-Dimethylurea (70%)	
65	Citric acid (40%)	N,N-Dimethylurea (60%)	_


2014化學年會講習-Green solvent

17

Lactic acid


Lactic acid and its derivatives

The bad

High reactive

corrosive

The good

Lactic acid-ChCl dissolve lignin

Low transition temperature DES with Hydrogen bond acceptor ex.ChCl

NH ₂	lactic acid (2.0 equiv)	
√ _o √ _o	solvent, 100 °C, 2.5 h	

ethyl lactate

solventyield (%) H_2O 0 CH_3CN 0DMF15EtOH30ethylene glycol40

NO₂

22

86

T_b 151~155℃

2-MeTHF

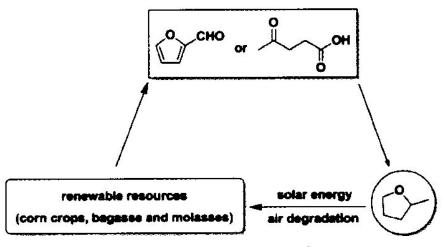
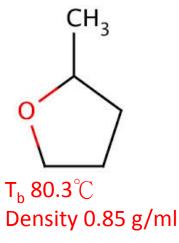



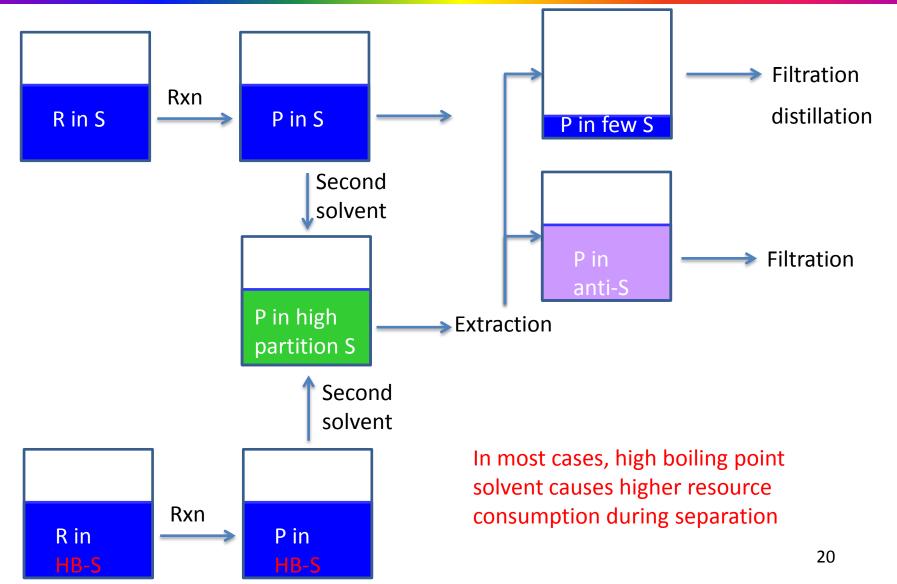
Fig. 3 Bio-based production of MeTHF.

Property	MeTHF	THF
CAS	96-47-9	109-99-9
EINECS	202-5074	203-726-8
Boiling Point(°c)	80	66
Freezing Point(°c)	-136	-108.5
Flash Point, TCC(°c)	-11.1	-14.5
Autoignition Temperature	270	215
Vapor Pressure at 20°c (mm Hg)	102	143
Density at 20°c	0.855	0.888
Viscosity at 25°c	0.60	0.53
Refractive index at 20°c	1.4060	1.4073
Latent heat of vaporization at 20°c(cal/g)	89.7	98.1
Solubility Parameter	8.52	9.15
Solubility in water at 20°c(wt%)	14	Inf
Solubility Water in MeTHF at 20°c(wt%)	4.4	Inf
Flammability limits in air(vol %): (upper limit-lower limit)	8.9-1.5	11.8-1.8
Boiling point of Water azeotrope °c)	71	63
Composition (solvent : water) of Water azeotrope (wt%)	89.4:10.6	93.3:6.7

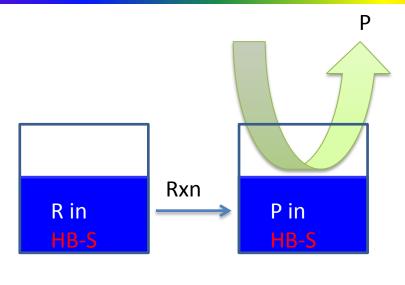
Theoretically replaced the solvent system:

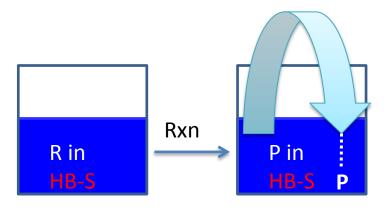
THF
Toluene
DCM
1,2-DCE

Price*


2-MeTHF	6,379 USD/ton
THF	3,358 USD/ton
Xylenes	1,752 USD/ton
DCM	743 USD/ton
1,2-DCE	687 USD/ton

^{*}http://www.molbase.com/


Problem of high boiling point



Possibility of high boiling point

Boiling point of P is sufficient lower than R and rxn temp.

P is immiscible or precipetated from HB-S. Ex. Polymerization rxn, this may also beneficial for the capability of high temperature to give high molecular weight product.

Ionic liquids, ILs

CHEMSUSCHEM REVIEWS

DOI: 10.1002/cssc.201301192

Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes

Francisco Pena-Pereira*(a, b) and Jacek Namieśnik(a)

Green Chemistry

PAPER

View Article Online
View Journal | View Issue

Design and evaluation of switchable-hydrophilicity solvents†

Cite this: Green Chem., 2014, 16, 1187

Jesse R. Vanderveen, Jeremy Durelle and Philip G. Jessop*

Green Chemistry

CRITICAL REVIEW

View Article Online
View Journal | View Issue

Are ionic liquids a proper solution to current environmental challenges?

Cite this: Green Chem., 2014, 16, 2375

Giorgio Cevasco^{a,b} and Cinzia Chiappe*^c

Francisco Pena-Pereira

Jacek Namieśnik

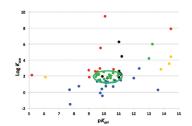


Fig. 1. All compounds tested for switchable miscibility with water at room temperature and 1:1 or 2:1 volume ratio of water to amine, plotted by their log K_{ow} and pK_{oh} , and coloured by their observed behaviour: monophasic (blue), irreversible (yellow), SHS (green), biphasic (refu) and precipitation upon CO₂ addition (black). All amine SHS fall within the green oval. No oval is shown for the amidines because the boundaries of the acceptable area for amidines are unknown.

Giorgio Cevasco and Cinzia Chiappe

ILs' development and progress

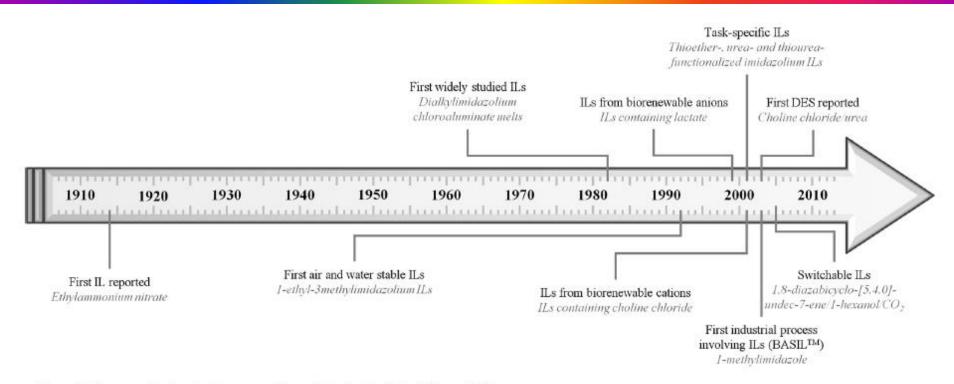


Figure 1. Milestones in the development of knowledge in the field of ILs and DESs.

lonic liquids: In this regard, remarkable advances towards the replacement of volatile organic solvents have been achieved by means of a group of organic salts with melting points below 100° C, generally referred to as ionic liquids (ILs)

Deep eutectic solvents: DESs are obtained by mixing two naturally occurring components, namely, hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which can be associated with each other by means of hydrogen bond interactions.

ILs' development and progress

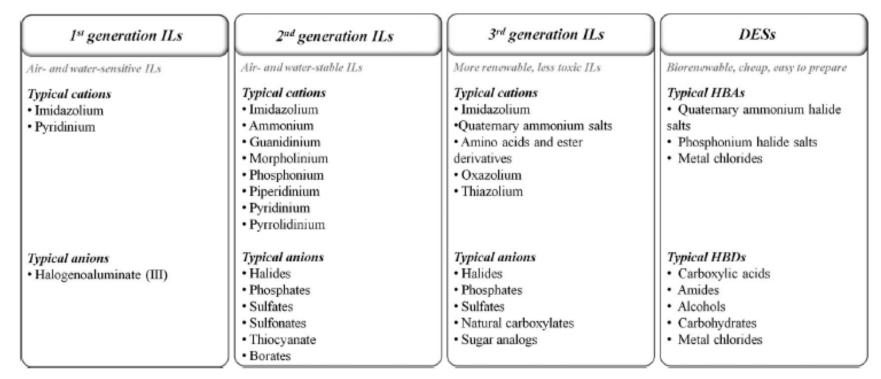


Figure 2. Classification of ILs and DESs.

ILs' cation

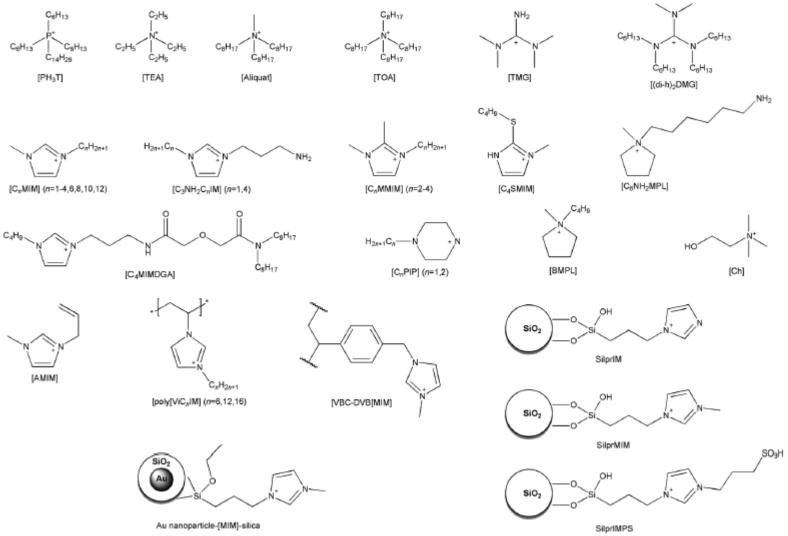


Figure 4. Chemical structure of ILs cations employed in selected extraction processes.

ILs' anion

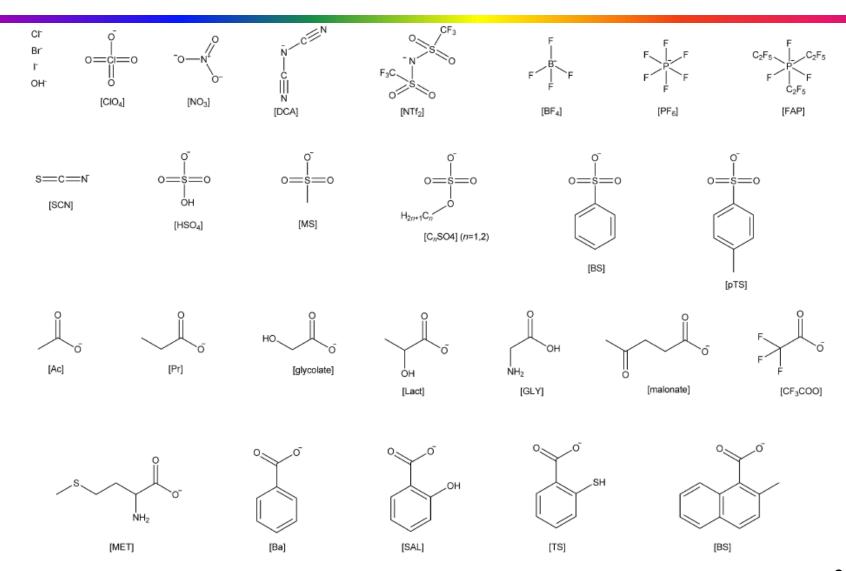


Figure 5. Chemical structure of ILs cations employed in selected extraction processes.

DESs' HBA

Figure 6. Chemical structure of compounds used as HBAs in selected extraction processes involving DESs.

Alike:

Carbohydrates low melting point mixtures

DESs' HBD

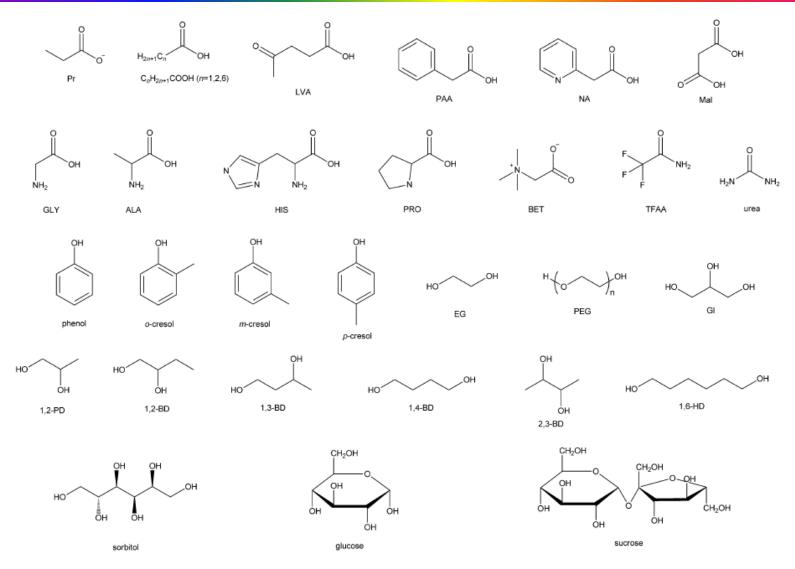
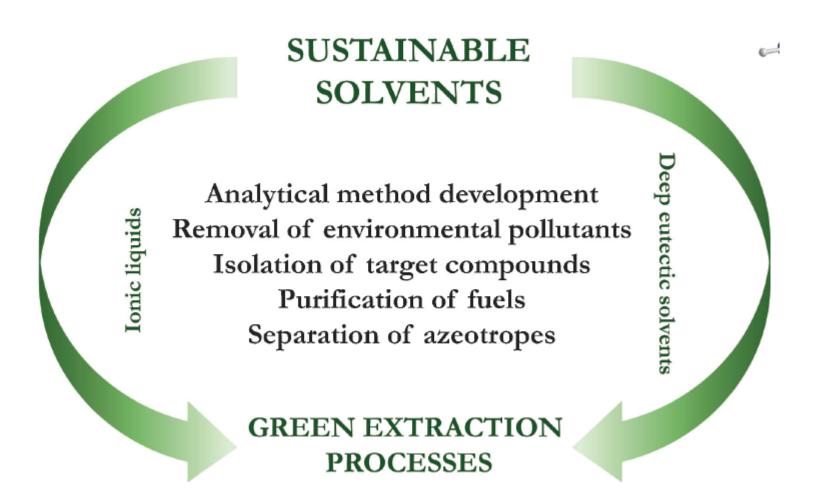
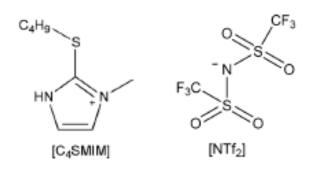
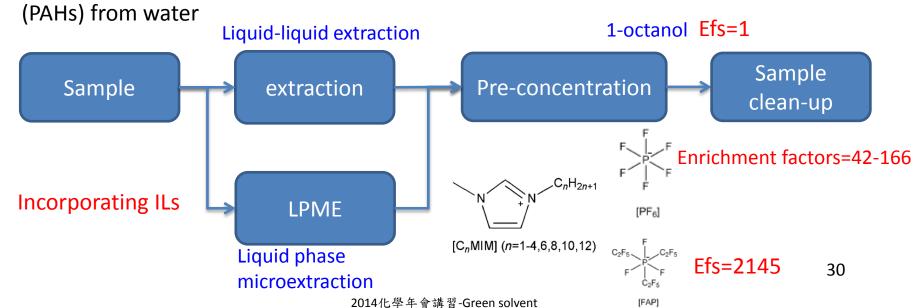



Figure 7. Chemical structure of compounds used as HBDs in selected extraction processes involving DESs. 2014化學年會講習-Green solvent



ILs' and DESs' researches

Analytical method development



Copper ion extraction from water sample

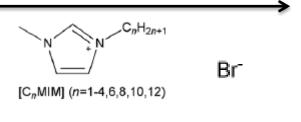
[C₄SMIM][NTf₂] showed certain selectivity in extracting Cu^{II} in the presence of Co^{II}, Fe^{II} or Ni^{II}

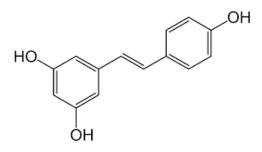
[C₄SMIM][NTf₂] can be regenerated by strong acid

Conventional LLE for analysis process of extracting polycyclic aromatic hydrocarbons

Analytical method development

Rhizoma polygoni cuspidati


虎仗草



Microwave assistant extraction, MAE

 $[C_4MIM][Br]$

92.8% extraction efficiency

Trans-resveratrol 白藜蘆醇 抗癌、抗心血管栓塞

Analytical method development

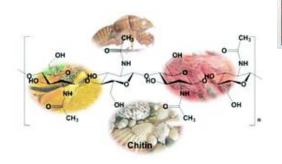
Target compounds	Samples	Extraction tech- nique	Evaluated extractant phases ^[a]	Extraction performance	Ref.
Ag ^{ll} , Cd ^{ll} , Cu ^{ll} , Hg ^{ll} , Pb ^{ll}	Water	LLE	[C ₄ MIM][PF ₆]	EE: 91.6-101.0%; EF: 2-50; RSD: ~0.2%	[62]
Sr ^{II}	Water	LLE	$[C_4MIM][PF_6]$, $[C_4MMIM][PF_6]$, $[C_2MIM][NTf_2]$, $[C_2MMIM][NTf_2]$, $[C_3MIM][NTf_2]$, $[C_3MMIM][NTf_2]$	D = 1.1×10^4 (2 h); EE ~ 100%	[63]
Cu ^{II}	Water	LLE	[C ₄ SMIM][NTf ₂]	EE: ~ 56 %	[64]
PAHs	Water	SDME/HS-SDME	$[C_4MIM][PF_6]$, $[C_6MIM][PF_6]$, $[C_8MIM][PF_6]$	EF: 42–166; RSD: 2.8-12%	[68]
PAHs	Water	SDME	$[C_6MIM][FAP]$, $[PH_3T][FAP]$, $[C_4MPL][FAP]$, $[C_6NH_2MPL][FAP]$	EF: 48-2145; RSD: 1.5-9.4%	[69]
Ni ^{II} and Pb ^{II}	Environmental and biological samples	HF-LPME	[C ₆ MIM][PF ₆]	EF: 60-76; RSD: 4.2-5.0%	[70]
Chlorophenols	Water	Three phase HF- LPME	[C ₈ MIM][PF ₆]	RSD: 4.3-5.9%	[71]
Hg ^{II}	Water	CIAME	$[C_6MIM][PF_6]$, $[C_6MIM][NTf_2]$	EF: 35; RSD: 1.32%	[72]
Hg ^{II}	Water	ISFME	[C ₆ MIM][BF ₄]	EF: 37; RSD: 1.94%	[73]
Acidic pharmaceuticals	Water	SPE	BVC-DVB[MIM][CF ₃ COO]	EE: 68-102%; RSD: < 4%	[74]
Organic acids, amines and aldehydes	Atmospheric aerosol	SPE	SilprMIM, SilprIM, SilprIMPS	EE: 19-110%; RSD: 3.4-23.1%	[75]
Sulfonylurea herbicides	Water	SPE	Au nanoparticle-[MIM]-silica	RSD: 2.8-4.0%	[76]
BTEX	Water-soluble paint	HS-SPME	[C ₈ MIM][PF ₆]	RSD: 3.5-10%	[77]
Organic acids	Glace fruits	PLE	[C ₈ MIM][CI]	EE: 80.4-107.9%; RSD: 2.1-3.6%	[78]
Flavonoids	Herbal medicines	PLE	$[C_4MIM][CI]$, $[C_6MIM][CI]$, $[C_8MIM][CI]$	RSD: 1.5-5.7%	[79]
trans-resveratrol	Herbal medicines	MAE	$[C_4MIM][Br]$, $[C_4MIM][CI]$, $[C_4MIM][BF_4]$	EE: 92.8; RSD: 1.5–2.1%	[80]
Sulfonamides	Water, milk, plasma and honey	MADLLME	$[C_4MIM][PF_6]$, $[C_6MIM][PF_6]$, $[C_8MIM][PF_6]$	EF: 24-44; RSD: 1.5-7.3 %	[81]
Flavonoids	Plants	SLE	ChCl/EG, ChCl/Gl, ChCl/1,2-BD, ChCl/1,3-BD, ChCl/1,4-BD, ChCl/2,3-BD, ChCl/1,6-HD	RSD: 2.72-3.06%	[82]

Removal of pollutants

Target com- pounds	Samples	Extraction technique	Evaluated extractant phases ^[a]	Extraction performance	Ref
Naphthalene	Soil	SLE	[C₄MIM][PF₅]	EE: 99.6%	[83]
Anionic dyes	Wastewater	LLE	$[C_4MIM][PF_6]$, $[C_6MIM][PF_6]$, $[C_8MIM][PF_6]$, $[C_6MIM][BF_4]$	EE: 69-100%	[84]
Phenol	Wastewater	SLME	$[C_2MIM][HSO_4]$, $[C_4MIM][BF_4]$, $[C_4MIM][PF_6]$, $[C_4MIM][NTf_2]$, $[C_4MIM][HSO_4]$, $[C_4MIM][FAP]$, $[C_6MIM][BF_4]$, $[C_6MIM][PF_6]$, $[PH_3T][NTf_2]$	EE: 85 %	[85]
Uranium	Water	LLE	[Aliquat][TS], [Aliquat][SCN], [Aliquat][MET]	EE:98%, D>1000	[86]
Actinides and lanthanides	Acidic feed solu- tions	LLE	[C ₄ MIMDGA][PF ₆], [C ₄ MIMDGA][NTf ₂]	D: 0.16-2230; selectivity: 3.07–8580	[87]
Uranium	Acidic feed solu- tions	SFE	$[C_4MIM][NTf_2]$	EE: 95 %	[88]
Dioxins	Simulated incinera- tion sources	GLE	[Aliquat][DCA], [C ₈ MIM][DCA]	Absorption capacity: 18% (w/w); height of a transfer unit: 0.73 cm	[89]
Sulfur dioxide	Gas stream	GLE	[C ₂ MIM][EtSO ₄]	Overall mass transfer coefficient: $(0.338 \pm 0.090) \times 10^{-5} \text{ ms}^{-1}$	[90]
Sulfur dioxide	Gas stream	GLE	ChCl/Gl	Absorption capacity: 0.678 g SO₂/g DESs	[91]
Carbon dioxide	Gas stream	GLE	$[C_3NH_2BIM][BF_4]$	Absorption capacity: ~0.5 mol CO ₂ /mol TSIL	[92]
Carbon dioxide	Gas stream	SILM	[Ch][Lact], [Ch][levulinate], [Ch][glycolate], [Ch][malonate]	Permselectivity: $\sim 20-35$ CO ₂ /NH ₄ , $\sim 35-50$ CO ₂ /N ₂	[93]

Isolation and recovery

Target com- pounds	Samples	Extraction technique	Evaluated extractant phases ^[a]	Extraction performance	Ref.
Lignin, cellu- lose, starch	Wheat straw bio- mass	SLE	LA/PRO, LA/BET, <i>LA/ChCl</i> , LA/HIS, LA/GLY, LA/ALA, MA/PRO, MA/BET, MA/ChCl, MA/HIS, MA/GLY, MA/ALA, MA/NA, OA/PRO, OA/BET, OA/ChCl, OA/HIS, OA/GLY, OA/NA, OA/ChCl/ALA, OA/PRO/ALA	Solubility: lignin, 5.38 % w/w; cellulose, 0.00 % w/w; starch, 0.00 % w/w	[100]
Glucose and carbohydrate mixtures	Aqueous solutions	LLE	$ \label{eq:continuous} $$ [(di-h)_2DMG][DCA], [Aliquat][CI], [Aliquat][DCA], [PH_3T][CI], [PH_3T][DCA], [C_4MIM][NTf_2], [C_{10}MIM][BF_4] $$ $$$	EE: glucose, 1.19–4.23 % w/w; EE: carbohydrate mixtures, 1.08–7.22 % w/w, selectivity, up to 4.7	[101]
Biphenyl cyclo- octene lignans	Herbal medicines	UAE	$ \begin{array}{l} [C_4MIM][OH], [C_4MIM][NO_3], [C_4MIM][HSO_4], [C_4MIM][CIO_4], [C_4MIM] \\ [Ac], [C_4MIM][Br], [C_4MIM][BF_4], [C_2MIM][Br], [C_6MIM][Br], [C_8MIM] \\ [Br], [C_{10}MIM][Br], [C_{12}MIM][Br] \end{array} $	EE: 100.0 ± 3.4; RSD: 2.8 %	[102]
Ginsenosides	Ginseng roots	UAE	$[C_3MIM][I]$, $[C_3MIM][BF_4]$, $[C_2MIM][Br]$, $[C_3MIM][Br]$, $[C_4MIM][Br]$, $[C_6MIM][Br]$	Extraction yield: 17.81 ± 0.47 mg g ⁻¹ ; RSD: 2.9%	[103]
Phenolic me- tabolites	Safflower	SLE	LA/glucose, MA/PRO, ChCl/sucrose, ChCl/glucose, ChCl/sorbitol; ChCl/1,2-PD; fructose/glucose/sucrose	EE: 71-92%; RSD: 4.7-14.4%	[104]
Glycols	Aqueous streams	LLE	[TOA][MNaph]	Selectivity: 3.1-7.08	[105]
Astaxanthin	Shrimp waste	UAE	$[C_4MIM][Br]$, $[C_4MIM][CI]$, $[C_4MIM][BF_4]$, $[C_4MIM][MS]$, $[C_2MIM][BF_4]$, $[C_6MIM][BF_4]$, $[C_3NH_2MIM][Br]$	Extraction yield: 92.7 μ gg ⁻¹ ; RSD: < 0.67%	[106]
α-tocoferol	Soybean oil deo- dorizer distillate	SPE	$ \begin{array}{l} [C_2MIM][GLY], \ [C_4MIM][GLY], \ [C_6MIM][GLY], \ [C_6MIM][PF_6], \\ [C_2MIM][EtSO_4], \ [C_2MIM][BF_4], \ [C_2MIM][CF_3COO] \end{array} $	Adsorption capacity: 211 mg g ⁻¹ adsorbent; selectivity: 10.5	[107]
PhenoIs	Model oils (toluene, <i>p</i> -xylene and n-hexane)	LLE	HBA: ChCl, Et ₃ NHCl, EtNH ₃ Cl	Removal efficiencies: phenol, 93%; o-cresol, 92.5%; m-cresol, 94.7%	[108]
Phenol	Toluene	LLE	HBA: Me ₄ NCl, Me ₄ NBr, <i>Et₄NCl</i> , Et ₄ NBr, MeEt ₃ NCl, Pr ₄ NCl, Bu ₄ NCl, NH ₄ Cl, ChBr, ChCl	Removal efficiency: 99.9%	[109]
Gold and plati- num	Aqueous solutions	LLE	$[C_8MMIM][NTf_2], [C_8MIM][NTf_2]$	Selectivity: ~ 1100 ; $D = 410$ and > 6000	[110]
Cooper	Waste printed cir- cuit boards	SLE	$[C_4MIM][HSO_4]$	EE: 99.92%	[111]


Fuel purification

Target com- pounds	Samples	Extraction technique	Evaluated extractant phases ^[a]	Extraction per- formance	Ref.
Bezothiophene	Octane	LLE	ChCl/Mal, ChCl/Gl, ChCl/EG, Me ₄ NCl/Gl, Me ₄ NCl/EG, Me ₄ NCl/PAA, Bu ₄ NCl/Mal, Bu ₄ NCl/Gl, Bu ₄ NCl/TetraEG, Bu ₄ NCl/EG, Bu ₄ NCl/PAA, Bu ₄ NCl/CA, Bu ₄ NCl/AA, Bu ₄ NCl/PFG	EE: 82.3 % (1 cycle), 99.5 % (5 cycles)	[117]
Aromatics	Aviation fuel oil	LLE	[MPIP][Lact], [MPIP][Pr], [MPIP][Ba], [MPIP][SAL], [MPIP][glycolate], [MPIP][MS], [MPIP] [BS], [MPIP][pTS], [EPIP][Lact], [EPIP][Pr], [TMG][Lact]	EE: 26.3 (1 cycle), 53.1% (3 cycles)	[118]
Glycerol	Soybean biodiesel	LLE	ChCl/Gl, AChCl/Gl, Pr ₄ NBr/Gl, EtNH ₃ Cl/Gl, ClEtMe ₃ NCl/Gl	EE: 100%	[119]
FG and TG	Palm oil biodiesel	LLE	ChCl/EG, ChCl/TFAA, ChCl/GI	EE: 100 % FG; 29.3 % TG	[120]
KOH and water	Palm oil biodiesel	LLE	ChCl/Gl, ChCl/EG, ChCl/TFAA, MTPB/Gl, MTPB/EG, MTPB/TEG	EE: 99.87 % (KOH); 92.02 % (water)	[121]

Applications of ILs

Applications based on properties:

Chitin and keratin dissolution

Cellulose dissolution

Cellulose

Precipitation in anti-solvent and then?

Side rxn ? Reuse ablility? Depolymerisation of non-natural polymers

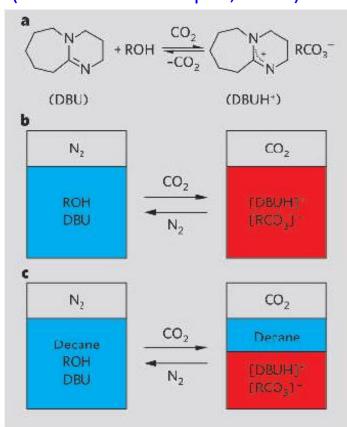
Ionic liquids,

CO₂ capture

(NH) 1L NH

Scheme 5 Nylon-6 depolymerisation.

Recovery and extraction of metals

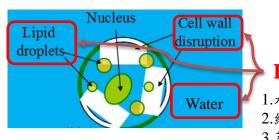

Should compare with industrial chemicals: monoethanol amine, MEA

The efficiency should be compared with Absorbent, chelating agent

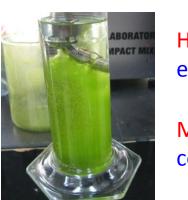


SHSs – reversible ILs

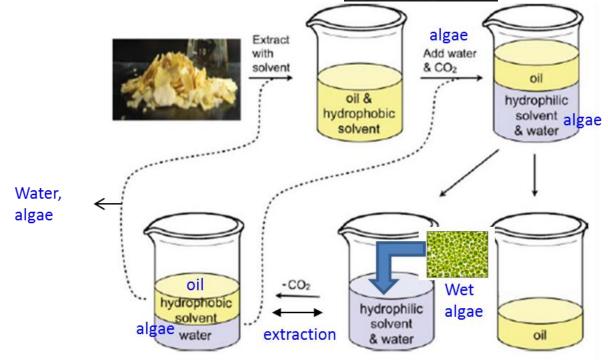
Switchable-Hydrophilicity Solvents, SHSs (Reversible ionic liquid, RevIL)


Jessop et al., ,Reversible nonpolar-to-polar solvent, p.1102, 2005, *Nature*

Jessop et al., "A solvent having switchable hydrophilicity" p.p. 809-814, 2010, *Green Chem.* 37



SHSs in wet algae oil extraction


Key issue

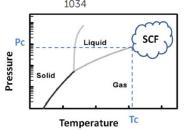
- 1.水的阻礙
- 2.細胞壁阻礙
- 3.萃取介質必需兼顧 親水及親油兩性

Hexane: low extraction efficiency due to water barrier

MeOH: High energy consumption due to recycle

Solvent with tunable properties

Green Chemistry



CRITICAL REVIEW

View Article Online
View Journal | View Issue

Solvents for sustainable chemical processes

Cite this: Green Chem., 2014, 16, 1034

Supercritical fluids, SCFs

and Charles L. Liotta*a,b,c

Gasexpanded liquid

Pamela Pollet, *a,b Evan A. Davey, Esteban E. Ureña-Benavides, Charles A. Eckerta, b,c

Low pressure CO₂ + solvent

Fig. 2 General phase diagram for supercritical fluids.

Water at elevated temperature

Solvent with tunable properties

Organic aqueous

Switchable ionic liquid

Recyclable DMSO

Solvent power

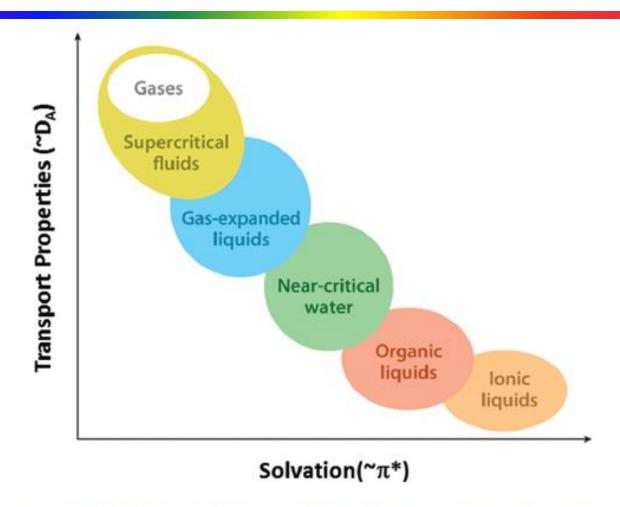


Fig. 1 Compromise of transport ability and solvent power for various types of solvents.

Tunable properties of SCF

Tunable solubility via pressure

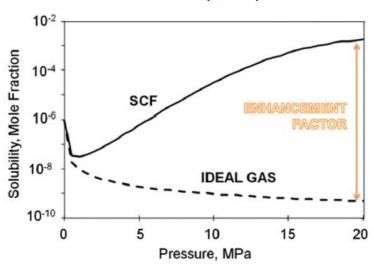
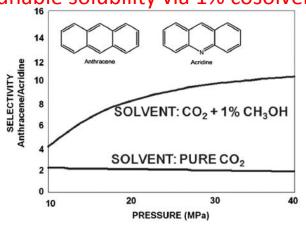



Fig. 3 Solubility enhancement with SCF over ideal gas.

Tunable solubility via 1% cosolvent

Tunable solubility via Temperature

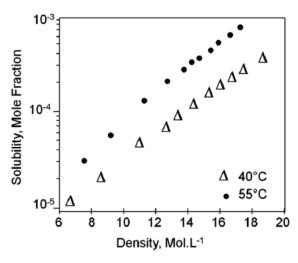


Fig. 4 Solubility of salicylic acid (2-hydroxybenzoic acid) in scCO₂.

Major difference to conventional solvents: The range of tunable properties are in the order of magnitude.

Reactions in SCF

$$CN + Br = K_2CO_3/TBAB/SCN$$
 $SCCO_2 T5^{\circ}C, 14MPa$
 $Et OEt CN$

Products are easy to separate via simply venting.

Fig. 7 Mechanism of PTC reaction in scCO₂. 18

NP formation in SCF

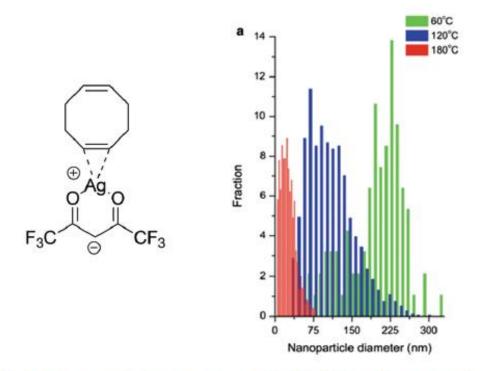


Fig. 13 Structure of the precursor 1,1,1,5,5,5-hexafluoroacetylacetonate cyclooctadiene Ag(hfac)(COD) and particle size distribution of silver nanoparticles deposited from scCO₂ onto a HCl treated silicon surface. Reprinted with kind permission from Springer Science and Business Media (M. Casciato, G. Levitin, D. Hess and M. Grover, J. Nanopart. Res., 2012, 14, 1–15).¹⁷

The precursor should be very special \rightarrow cost issue

Gas-expanded liquids

Gas-expanded liquids, GXLs:

Mixtures of organic solvent with CO₂ at moderated pressures (3-8 MPa) (C.f. scCO₂ 7.2 MPa)

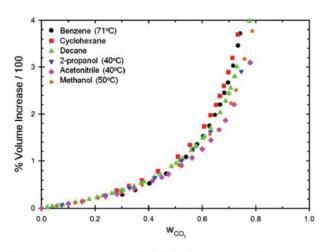


Fig. 14 Volume expansion with CO_2 for benzene, cyclohexane, decane, 2-propanol, acetonitrile and methanol.

In situ acid catalysis:

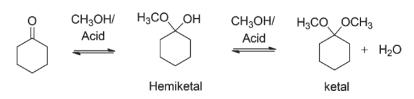


Fig. 18 Ketal formation in gas-expanded alcohol.

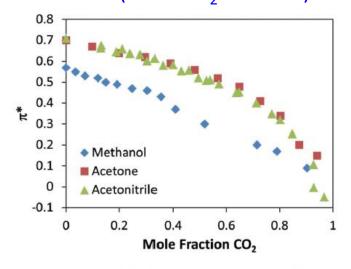
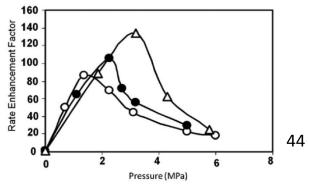



Fig. 15 Experimental π^* values for gas-expanded methanol (using 4-nitroanisole), ⁶⁵ acetone (N,N-dimethyl-4-nitroaniline) ⁶⁵ and acetonitrile (using 4-nitro-anisole) ^{63,64,66} as a function of CO₂ mol fraction at 40 °C.

Organic aqueous

Organic aqueous tunable solvents, OATS:

For reaction between hydrophilic catalyst and hydrophobic substrate

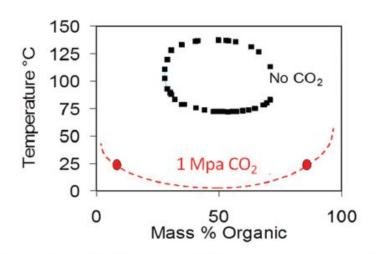


Fig. 21 Liquid-liquid phase boundaries for THF-water with and without CO₂.

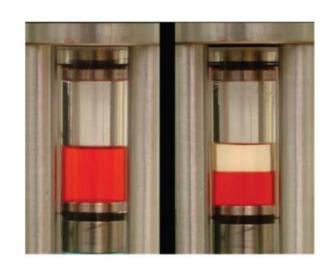
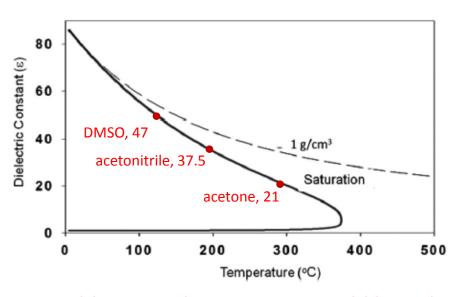
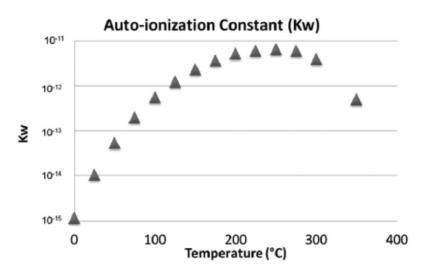
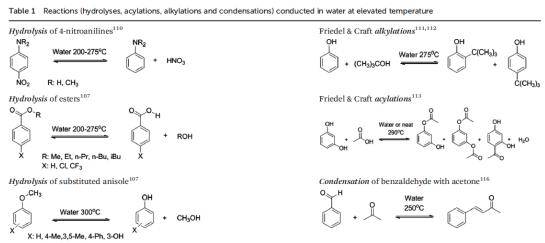




Fig. 23 Water-THF-CO $_2$ Equilibria. Left: No CO $_2$, a single phase. Right: 2 MPa of CO $_2$, two liquid phases with dye partitioning >10 6 .



Water at elevated temperature

Acid-base catalysis process would be enhanced. Also hydrolysis reactions.

Switchable solvents

Table 2 Sulfolenes and corresponding melting points

Cheletropic reaction of dienes and SO ₂ to sulfolenes	Melting point of sulfolene (°C)
Butadiene Sulfone OSO	64-65
Piperylene Sulfone	-12
2,3-Dimethylbutadiene Sulfone	134-136
→ So ₂ → S	
Isoprene Sulfone	63-64

Table 3 Physical properties of DMSO and piperylene sulfone

	DMSO	Piperylene sulfone
Boiling point (°C)	189 (34/3 Torr)	85 (7 Torr)
Melting point (°C)	16-19	-12
Dipole moment (D)	4.27	5.32
α	0	0
β	0.76	0.46
π^*	1.00	0.87
$E_{\rm T}(30)$ (kJ mol ⁻¹)	189	189
ε	46.7	42.5

Recyclable DMSO

As green solvent

Process design of switchable solvents as green solvent

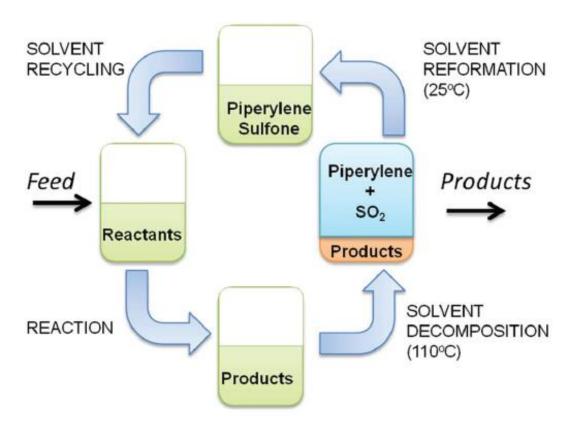
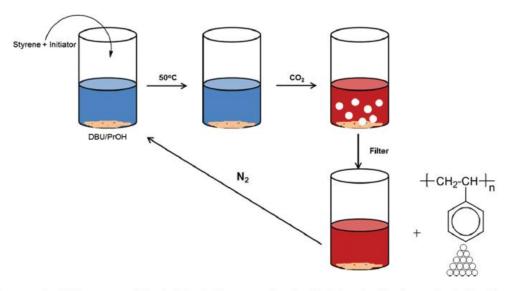



Fig. 34 Recycling and reformation process of piperylene sulfone.

SHSs used in polymerization

Fig. 40 Two-component RevILs. The molecular liquids are composed of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (top) or N,N,N',N'-tetramethyl-N''-butylguanidine (TMBG) (bottom) and alcohol (ROH). Under

Sustainable chromatography

Green Chemistry

PERSPECTIVE

View Article Online
View Journal | View Issue

Cite this: *Green Chem.*, 2014, **16**, 4060

Sustainable chromatography (an oxymoron?)

Emily A. Peterson,* Barry Dillon, Izzat Raheem, Paul Richardson, Daniel Richter, Rachel Schmidte and Helen F. Sneddon

Emily A. Peterson

Barry Dillon

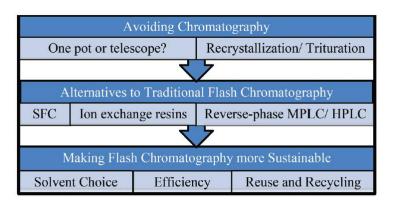


Fig. 1 Compound isolation decision tree.

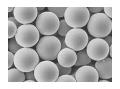
Reduce, Reuse, recycle

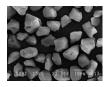
Solvent reduction

Normal Phase, Silica Normal Phase, Alumina Normal Phase, NH2

Reverse Phase, C18

Ion Exchange, SCX


•••


Column selection

Smallest column that adequate separation

Forego column equilibration

For commercial pre-packed column less than 120 g size.

High quality column packing

Smaller particle or spherical silica gel

Real time analysis

Conserve fraction tubes, solvent and time

Overall reduction of organic solvent use during silica gel chromatography

Solvent front

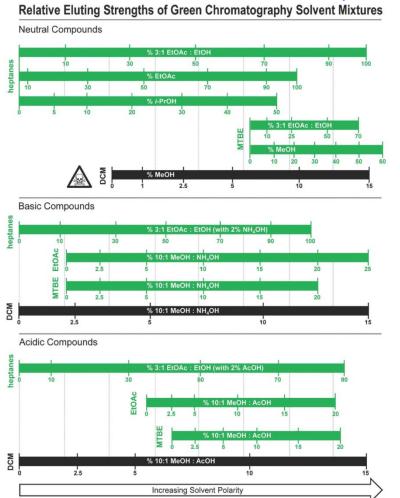
Compound spot

Baseline (Origin)

Gradient development

TLC first
Avoid 100% heptane
→100% EA

Example:


TLC of rxn mixture R_f =0.1~0.5 At polar solvent ratio: X% →Try MPLC from (X/4)% to 2X% ratio over 10 column volume(CV) and hold at 2X% for 1CV

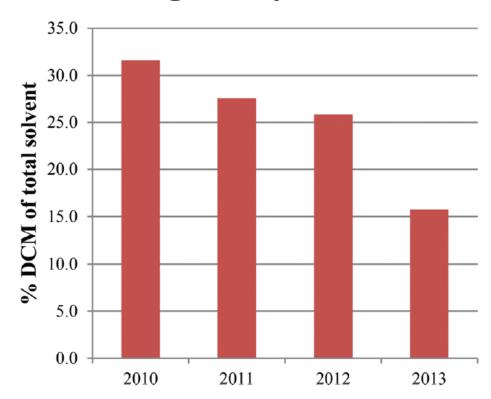
Solvent selection

Objective: Reduce DCM usage

Challenge: Familiarizing chemists with alternative solvent systems

Metrics

Metrics from:


- 1. Solvent ordered
- 2. Solvent consumed
- 3. Solvent waste

Chemists to be aware of!

Example:

Drug Discovery Department at the Amgen Massachusetts site have reduced their absolute consumption of DCM by over 60% between 2010 and 2013.

Average Yearly %DCM

The more ways...

Solvent recycling

Hard!

Need apparatus and distillation process of mixed solvent waste

Silica reuse

Possible!

Use TLC to make sure the silica reusability.

Supercritical fluid chromatography, SFC

Possible!
How about SCF flashing?

Overall reduction of resource used during silica gel flashing/chromatography

Reverse phase HPLC and MPLC

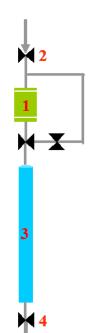
Possible!

HPLC reverse phase columns are often used for upwards
1500 injections.

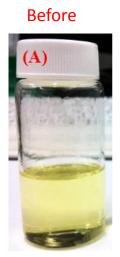
Reuse of 4L bottles

Possible!
High melting point is a problem to current glass recycle system.

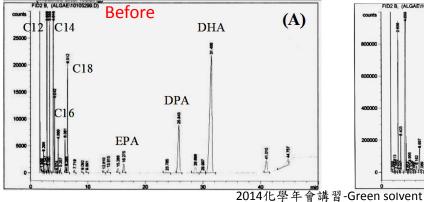
Fraction

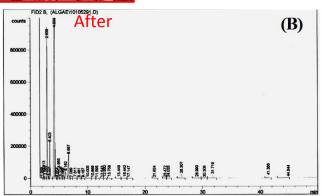

tubes

Possible!
Although could be recycle,
reuse is a more sustainable way 54


SCF flashing column

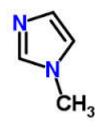
Separation of algae oil FAME, a sustainable energy source





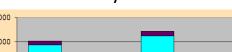
C12-C18 Purity: 70.1%

C12-C18
Purity: 97.1%

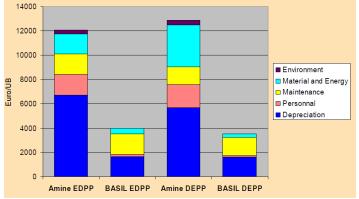


Industrial application-ILs

Ref: http://www.basf.com/group/corporate/en/innovations/publications/innovation-award/2004/basil


1-Methylimidazol (MIA)

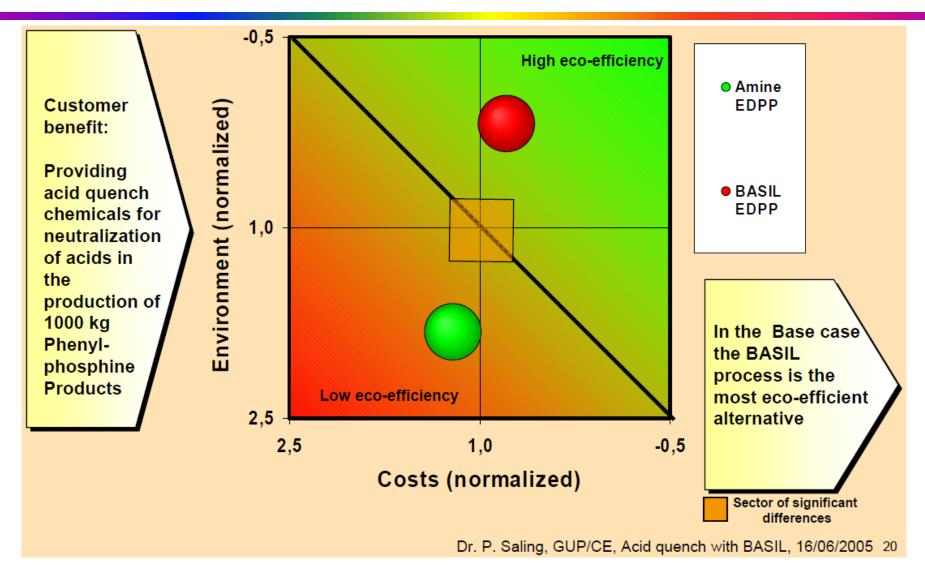
BASIL™– The first commercial process using ionic liquids


BASF's innovative BASIL™ technology can significantly improve chemical processes, increasing yields and capacities. This technology involves what are known as ionic liquids, and provides an elegant solution to a challenge met in many production processes: The removal of acids that are formed as by-products. The conventional method results in the formation of solid salts, which cause problems in large-scale production. If the BASIL™ technology is used, however, the salts remain liquid and are much easier to handle.

How powerful to find a suitable application of ionic liquid Acid quench reaction:

EDPP DPCP EDPP

Life cycle costs



Not only green, but also make more money 56

NaOH

Portfolio

Industrial application- SCF

Ref: http://www.dyecoo.com/dyecoo-and-nike/

BEAVERTON, Ore. (February 7, 2012) By using recycled carbon dioxide, DyeCoo's technology eliminates the use of water in the textile dyeing process. The name "DyeCoo" was inspired by the process of "dyeing" with "CO₂." The partnership is illustrative of NIKE, Inc.'s long-term commitment to designing and developing the most superior athletic performance products for athletes and its overall sustainable business and innovation strategy

Another example of water to be not a green enough solvent

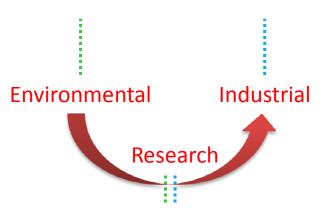
scCO2 dying of Nike

Dyecoo technology used in new Nike factory in Taiwan

Compared to traditional dyeing methods, the ColorDry process reduces dyeing time by 40%, energy use by around 60% and the required factory footprint by a quarter.

...green solvent development should keep on going...

TAIPEI, Taiwan. (December 3, 2013) –NIKE, Inc. celebrated the opening of a waterfree dyeing facility featuring high-tech equipment to eliminate the use of water and process chemicals from fabric dyeing at its Taiwanese contract manufacturer Far Eastern New Century Corp. NIKE, Inc. has named this sustainable innovation "ColorDry" to highlight the environmental benefits and unprecedented coloring achieved with the technology.



To end up

"...a green solvent will only be chosen if one exists with the desired properties."

-Jessop, 2011

Green solvent

Sustainable:

"Development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

Sustainable

–The Brundtland Commission of the United Nation $\0